On the Fourier dimension of $(d,k)$-sets and Kakeya sets with restricted directions

A (d, k)-set is a subset of R containing a k-dimensional unit ball of all possible orientations. Using an approach of D. Oberlin we prove various Fourier dimension estimates for compact (d, k)-sets. Our main interest is in restricted (d, k)-sets, where the set only contains unit balls with a restricted set of possible orientations Γ. In this setting our estimates depend on the Hausdorff dimension of Γ and can sometimes be improved if additional geometric properties of Γ are assumed. Mathematics Subject Classification 2010: primary: 42B10, 28A80, 28A78.

[1]  K. Falconer Continuity properties of k-plane integrals and Besicovitch sets , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  S. Pfeifer The Geometry Of Fractal Sets , 2016 .

[3]  Jean Bourgain,et al.  Besicovitch type maximal operators and applications to fourier analysis , 1991 .

[4]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[5]  A. Besicovitch On Kakeya's problem and a similar one , 1928 .

[6]  Lawrence A. Kolasa,et al.  On some variants of the Kakeya problem , 1999 .

[7]  J. Hickman,et al.  Improved bounds for the Kakeya maximal conjecture in higher dimensions , 2019, American Journal of Mathematics.

[8]  P. Mattila Fourier Analysis and Hausdorff Dimension , 2015 .

[9]  D. Oberlin Restricted Radon Transforms and Unions of Hyperplanes , 2006 .

[10]  Roy O. Davies,et al.  Some remarks on the Kakeya problem , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  R. Cooke Real and Complex Analysis , 2011 .

[12]  J. Schmeling,et al.  On the Fourier dimension and a modification , 2014, 1406.1480.

[13]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[14]  L. Grafakos Classical Fourier Analysis , 2010 .

[15]  Joshua Zahl,et al.  An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³ , 2017, Journal of the American Mathematical Society.

[16]  Thomas Wolff,et al.  A Kakeya-type problem for circles , 1997 .

[17]  D. Oberlin Exceptional sets of projections, unions of k-planes and associated transforms , 2011, 1107.4913.

[18]  R. Oberlin Two bounds for the X-ray transform , 2006, math/0610942.

[19]  Terence Tao,et al.  New bounds for Kakeya problems , 2001 .