Nanomechanical biosensors: a new sensing tool

Biosensors based on microcantilevers have become a promising tool for directly detecting biomolecular interactions with great accuracy. Microcantilevers translate molecular recognition of biomolecules into nanomechanical motion that is commonly coupled to an optical or piezo-resistive read-out detector system. Biosensors based on cantilevers are a good example of how nanotechnology and biotechnology can go together. High-throughput platforms using arrays of cantilevers have been developed for simultaneous measurement and read-out of hundreds of samples. As a result, many interesting applications have been performed and the first sensor platforms are being commercialized. This review covers the basic working principles and the types of sensor format, the fabrication and the reported applications in chemical and biological analysis, trends in cantilever fabrication, examples of the commercial instrumentation available, and future developments.

[1]  O. Hansen,et al.  Optimization of sensitivity and noise in piezoresistive cantilevers , 2002 .

[2]  T. Kenny,et al.  Attonewton force detection using ultrathin silicon cantilevers , 1997 .

[3]  Sara Tombelli,et al.  Direct immobilisation of DNA probes for the development of affinity biosensors. , 2005, Bioelectrochemistry.

[4]  Thomas W. Kenny,et al.  Low‐stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope , 1996 .

[5]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[6]  Martin Hegner,et al.  Rapid functionalization of cantilever array sensors by inkjet printing , 2004 .

[7]  Anja Boisen,et al.  SU-8 cantilever sensor system with integrated readout , 2005 .

[8]  Thomas Thundat,et al.  Detection of pH variation using modified microcantilever sensors , 2001 .

[9]  P V Bonnesen,et al.  Ultrasensitive detection of CrO4(2-) using a microcantilever sensor. , 2001, Analytical chemistry.

[10]  L M Lechuga,et al.  Light coupling into an optical microcantilever by an embedded diffraction grating. , 2006, Applied optics.

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  H. Lang,et al.  Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Taroni,et al.  Development and application of mass sensors based on flexural resonances in alumina beams , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  Thomas Thundat,et al.  A novel self-assembled monolayer (SAM) coated microcantilever for low level caesium detection , 2000 .

[15]  W. Gropp,et al.  Accepted for publication , 2001 .

[16]  A. Ellington,et al.  Adapting selected nucleic acid ligands (aptamers) to biosensors. , 1998, Analytical chemistry.

[17]  Peter Vettiger,et al.  Micromachined Photoplastic Probes for Scanning Probe Microscopy , 2001 .

[18]  Gil U. Lee,et al.  A high-sensitivity micromachined biosensor , 1997, Proc. IEEE.

[19]  Michael Sepaniak,et al.  Microcantilever transducers: a new approach in sensor technology. , 2002, Analytical chemistry.

[20]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[21]  J. Kang,et al.  Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. , 2005, Biosensors & bioelectronics.

[22]  E. A. Wachter,et al.  Detection of mercury vapor using resonating microcantilevers , 1995 .

[23]  Drechsler,et al.  A cantilever array-based artificial nose , 2000, Ultramicroscopy.

[24]  Giridharan Gokulrangan,et al.  DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. , 2005, Analytical chemistry.

[25]  M. Sepaniak,et al.  Enhancing chemi-mechanical transduction in microcantilever chemical sensing by surface modification. , 2003, Ultramicroscopy.

[26]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[27]  T. Thundat,et al.  Detection of trinitrotoluene via deflagration on a microcantilever , 2004 .

[28]  P Vadgama,et al.  Amperometric detection of DNA hybridization on a gold surface depends on the orientation of oligonucleotide chains. , 2001, Bioelectrochemistry.

[29]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[30]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[31]  U. Drechsler,et al.  Real-time mass sensing by nanomechanical resonators in fluid , 2004, Proceedings of IEEE Sensors, 2004..

[32]  P. Vettiger,et al.  Polymer-based stress sensor with integrated readout , 2002 .

[33]  James K. Gimzewski,et al.  Stress at the Solid−Liquid Interface of Self-Assembled Monolayers on Gold Investigated with a Nanomechanical Sensor , 2000 .

[34]  G. Hicks,et al.  The Enzyme Electrode , 1967, Nature.

[35]  H Goncalves,et al.  Scanning , 2004, IEEE Trans. Autom. Control..

[36]  L. Lechuga,et al.  Development of nanomechanical biosensors for detection of the pesticide DDT. , 2003, Biosensors & bioelectronics.

[37]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[38]  S. Manalis,et al.  Micromechanical detection of proteins using aptamer-based receptor molecules. , 2004, Analytical chemistry.

[39]  Cengiz S. Ozkan,et al.  Analysis, control and augmentation of microcantilever deflections in bio-sensing systems , 2003 .

[40]  Panos G. Datskos,et al.  Detection of 2-mercaptoethanol using gold-coated micromachined cantilevers , 1999 .

[41]  L M Lechuga,et al.  Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[42]  L. C. Clark,et al.  ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY , 1962 .

[43]  M. Grattarola,et al.  Micromechanical cantilever-based biosensors , 2001 .

[44]  T. Thundat,et al.  Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. , 2001, Analytical chemistry.

[45]  Hans-Jürgen Butt,et al.  A Sensitive Method to Measure Changes in the Surface Stress of Solids , 1996 .

[46]  T. Thundat,et al.  Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers , 2003 .

[47]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[48]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[49]  William G Delinger,et al.  Viral detection using an embedded piezoresistive microcantilever sensor , 2003 .

[50]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  T. Thundat,et al.  Glucose biosensing using an enzyme-coated microcantilever , 2002 .

[53]  Vinayak P. Dravid,et al.  Microcantilever resonance-based DNA detection with nanoparticle probes , 2003 .

[54]  J. T. Clerc,et al.  Trends in analytical chemistry , 1980 .

[55]  Christiane Ziegler,et al.  Cantilever-based biosensors , 2004, Analytical and bioanalytical chemistry.

[56]  T. M. Herne,et al.  Characterization of DNA Probes Immobilized on Gold Surfaces , 1997 .

[57]  B. L. Weeks,et al.  A microcantilever-based pathogen detector. , 2003, Scanning.

[58]  Panos G. Datskos,et al.  Enhanced chemi-mechanical transduction at nanostructured interfaces , 2001 .

[59]  Thomas Thundat,et al.  In situ detection of calcium ions with chemically modified microcantilevers. , 2002, Biosensors & bioelectronics.

[60]  Itamar Willner,et al.  Assembly of functionalized monolayers of redox proteins on electrode surfaces: novel bioelectronic and optobioelectronic systems , 1997 .

[61]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[62]  J. Gilman,et al.  Nanotechnology , 2001 .

[63]  Teodor Gotszalk,et al.  Characterization of a cantilever with an integrated deflection sensor , 1995 .

[64]  Nikin Patel,et al.  Immobilization of Protein Molecules onto Homogeneous and Mixed Carboxylate-Terminated Self-Assembled Monolayers , 1997 .

[65]  Hai-Feng Ji,et al.  Detection of Pb^2+ Using a Hydrogel Swelling Microcantilever Sensor , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[66]  Johannes D. Seelig,et al.  Label-free protein assay based on a nanomechanical cantilever array , 2002 .

[67]  C. Quate,et al.  Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators , 1995 .

[68]  B. Rogers,et al.  Explosives: A microsensor for trinitrotoluene vapour , 2003, Nature.

[69]  T. Kenny,et al.  High-sensitivity piezoresistive cantilevers under 1000 Å thick , 1999 .

[70]  Wole Soboyejo,et al.  Sensing Interactions Between Vimentin Antibodies and Antigens for Early Cancer Detection , 2005 .

[71]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[72]  Panos G. Datskos,et al.  Gold Nano-Structures for Transduction of Biomolecular Interactions into Micrometer Scale Movements , 2001 .

[73]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .