Quantum Point Defects for Solid‐State Laser Refrigeration

Herein, the role that point defects have played over the last two decades in realizing solid‐state laser refrigeration is discussed. A brief introduction to the field of solid‐state laser refrigeration is given with an emphasis on the fundamental physical phenomena and quantized electronic transitions that have made solid‐state laser‐cooling possible. Lanthanide‐based point defects, such as trivalent ytterbium ions (Yb3+), have played a central role in the first demonstrations and subsequent development of advanced materials for solid‐state laser refrigeration. Significant discussion is devoted to the quantum mechanical description of optical transitions in lanthanide ions, and their influence on laser cooling. Transition‐metal point defects have been shown to generate substantial background absorption in ceramic materials, decreasing the overall efficiency of a particular laser refrigeration material. Other potential color centers based on fluoride vacancies with multiple potential charge states are also considered. In conclusion, novel materials for solid‐state laser refrigeration, including color centers in diamond that have recently been proposed to realize the solid‐state laser refrigeration of semiconducting materials, are discussed.

[1]  P. Pauzauskie,et al.  Design of a radiation-balanced fiber laser via optically active composite cladding materials , 2019, Journal of the Optical Society of America B.

[2]  Mansoor Sheik-Bahae,et al.  Optical refrigeration: the role of parasitic absorption at cryogenic temperatures. , 2019, Optics express.

[3]  Shubin Zhang,et al.  Progress in laser cooling semiconductor nanocrystals and nanostructures , 2019, NPG Asia Materials.

[4]  P. Pauzauskie,et al.  Can lasers really refrigerate CdS nanobelts? , 2019, Nature.

[5]  Alexander B. Bard,et al.  Interface-Dependent Radiative Lifetimes of Yb^3+, Er^3+ codoped Single NaYF_4 Upconversion Nanowires. , 2019, ACS applied materials & interfaces.

[6]  A. P. Voitovich,et al.  Luminescence and electron-phonon interaction characteristics of radiation-induced point defects in magnesium fluoride nanocrystals , 2019, Journal of Luminescence.

[7]  A. Krueger,et al.  Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions. , 2019, Nanoscale.

[8]  A. Barnard,et al.  Does Twinning Impact Structure/Property Relationships in Diamond Nanoparticles? , 2019, The Journal of Physical Chemistry C.

[9]  O. Shenderova,et al.  Review Article: Synthesis, properties, and applications of fluorescent diamond particles , 2019, Journal of vacuum science and technology. B, Nanotechnology & microelectronics : materials, processing, measurement, & phenomena : JVST B.

[10]  U. Gerstmann,et al.  Investigation of near-surface defects of nanodiamonds by high-frequency EPR and DFT calculation. , 2019, The Journal of chemical physics.

[11]  P. Hemmer,et al.  Growth of High-Purity Low-Strain Fluorescent Nanodiamonds , 2019, ACS Photonics.

[12]  N. Sahu,et al.  Synthesis and characterization of nanodiamond-anticancer drug conjugates for tumor targeting , 2019, Diamond and Related Materials.

[13]  F. Jelezko,et al.  Compact integrated magnetometer based on nitrogen-vacancy centres in diamond , 2019, Diamond and Related Materials.

[14]  F. Jelezko,et al.  Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond , 2019, Science.

[15]  Mansoor Sheik-Bahae,et al.  Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers. , 2019, Optics letters.

[16]  Zhou Yang,et al.  Radiation-balanced Yb:YAG disk laser. , 2019, Optics express.

[17]  Mansoor Sheik-Bahae,et al.  Observation of optical refrigeration in a holmium-doped crystal , 2018, Photonics Research.

[18]  E. Ekimov,et al.  Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry , 2018, Science Advances.

[19]  R. Stroud,et al.  High-pressure, high-temperature molecular doping of nanodiamond , 2018, Science Advances.

[20]  Joseph M. Kasper,et al.  Electronic structures and spectroscopic signatures of silicon-vacancy containing nanodiamonds , 2018, Physical Review B.

[21]  A. Di Lieto,et al.  Anti‐Stokes cooling of Yb-doped KYF4 single crystals , 2018, Journal of Luminescence.

[22]  Improving the electron spin properties of nitrogen-vacancy centres in nanodiamonds by near-field etching , 2018, Scientific Reports.

[23]  C. Shan,et al.  Phonon-Assisted Photoluminescence Up-Conversion of Silicon-Vacancy Centers in Diamond. , 2018, The journal of physical chemistry letters.

[24]  R. Schirhagl,et al.  Toward Using Fluorescent Nanodiamonds To Study Chronological Aging in Saccharomyces cerevisiae. , 2018, Analytical chemistry.

[25]  A. Shojaei,et al.  Bare and functionalized nanodiamonds in aqueous media: A theoretical study , 2018, Diamond and Related Materials.

[26]  Mostafa Peysokhan,et al.  Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers , 2018, Journal of the Optical Society of America B.

[27]  Gavin W. Morley,et al.  Production of Metal-Free Diamond Nanoparticles , 2018, ACS omega.

[28]  M. Crane,et al.  Photothermal Heating and Cooling of Nanostructures. , 2018, Chemistry, an Asian journal.

[29]  T. Ohshima,et al.  NV−–N+ pair centre in 1b diamond , 2018, New Journal of Physics.

[30]  Mansoor Sheik-Bahae,et al.  First demonstration of an all-solid-state optical cryocooler , 2018, Light: Science & Applications.

[31]  Joseph M. Kasper,et al.  Effect of Surface Passivation on Nanodiamond Crystallinity , 2018 .

[32]  F. Hawthorne,et al.  Infrared Spectroscopy of Carbonaceous-chondrite Inclusions in the Kapoeta Meteorite: Discovery of Nanodiamonds with New Spectral Features and Astrophysical Implications , 2018 .

[33]  M. Tonelli,et al.  Co-doping of LiYF4 crystal: a virtuous effect of cooling efficiency , 2018 .

[34]  Bennett E. Smith,et al.  Optomechanical Thermometry of Nanoribbon Cantilevers , 2018 .

[35]  S. Singamaneni,et al.  Multifunctional Surface Modification of Nanodiamonds Based on Dopamine Polymerization. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[36]  Philippe Goldner,et al.  Spectroscopic study of hyperfine properties in Yb3+171:Y2SiO5 , 2017, Physical Review B.

[37]  L. Krivitsky,et al.  Varying temperature and silicon content in nanodiamond growth: effects on silicon-vacancy centres , 2017, Scientific Reports.

[38]  Bennett E. Smith,et al.  Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell , 2017, Diamond and Related Materials.

[39]  D. Spitzer,et al.  Optical properties of functionalized nanodiamonds , 2017, Scientific Reports.

[40]  G. G. Lesseux,et al.  Crystal-field effects in Er3+- and Yb3+-doped hexagonal NaYF4 nanoparticles , 2017 .

[41]  Peter F. Barker,et al.  Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals , 2017 .

[42]  I. Lednev,et al.  Carbon structure in nanodiamonds elucidated from Raman spectroscopy , 2017 .

[43]  Yuri N. Palyanov,et al.  Germanium-Vacancy Color Center in Diamond as a Non-invasive Temperature Sensor , 2017, 1709.00456.

[44]  P. May,et al.  Diamond thin films: giving biomedical applications a new shine , 2017, Journal of The Royal Society Interface.

[45]  Yuri N. Palyanov,et al.  Incorporation of large impurity atoms into the diamond crystal lattice: EPR of split-vacancy defects in diamond , 2017 .

[46]  Shubin Zhang,et al.  Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion , 2017 .

[47]  M. Lukin,et al.  All-optical nanoscale thermometry with silicon-vacancy centers in diamond , 2017, 1708.05419.

[48]  K. Turcheniuk,et al.  Biomedical applications of nanodiamond (Review) , 2017, Nanotechnology.

[49]  André Chwalibog,et al.  Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model , 2017, International journal of nanomedicine.

[50]  Hoi Man Leung,et al.  Cancer-Cell-Specific Mitochondria-Targeted Drug Delivery by Dual-Ligand-Functionalized Nanodiamonds Circumvent Drug Resistance. , 2017, ACS applied materials & interfaces.

[51]  M. Kern,et al.  Optical cryocooling of diamond , 2017, 1701.08505.

[52]  S. Hell,et al.  Superresolution optical magnetic imaging and spectroscopy using individual electronic spins in diamond. , 2016, Optics express.

[53]  Bennett E. Smith,et al.  Laser Refrigeration of Ytterbium‐Doped Sodium–Yttrium–Fluoride Nanowires , 2016, Advanced materials.

[54]  Huan-Cheng Chang,et al.  Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol , 2016, Scientific Reports.

[55]  Gavin W. Morley,et al.  Optical levitation of high purity nanodiamonds in vacuum without heating , 2016, 1608.04724.

[56]  Mansoor Sheik-Bahae,et al.  Laser cooling in solids: advances and prospects , 2016, Reports on progress in physics. Physical Society.

[57]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[58]  Alexander R. Albrecht,et al.  Solid-state optical refrigeration to sub-100 Kelvin regime , 2016, Scientific Reports.

[59]  H. Mohseni,et al.  Efficient luminescence extraction strategies and anti-reflective coatings to enhance optical refrigeration of semiconductors , 2016 .

[60]  Peter J. Pauzauskie,et al.  Laser refrigeration of hydrothermal nanocrystals in physiological media , 2015, Proceedings of the National Academy of Sciences.

[61]  J. Goss,et al.  The vacancy–hydrogen defect in diamond: A computational study , 2015 .

[62]  A. Nakladov,et al.  Laser cooling of solids containing local centers with electric dipole allowed transitions: a feasibility study , 2015 .

[63]  Raman Kashyap,et al.  Optimization of optical refrigaration in Yb3+:YAG samples , 2015 .

[64]  R. Rapaport,et al.  Purcell-enhanced optical spin readout of nitrogen-vacancy centers in diamond , 2015, 1505.01006.

[65]  Mauro Tonelli,et al.  Novel approach for solid state cryocoolers. , 2015, Optics express.

[66]  Guokui Liu Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. , 2015, Chemical Society reviews.

[67]  Hongbin Sun,et al.  Single-protein spin resonance spectroscopy under ambient conditions , 2015, Science.

[68]  Bennett E. Smith,et al.  Rapid sol–gel synthesis of nanodiamond aerogel , 2014 .

[69]  Y. Gogotsi,et al.  Thermochemistry of nanodiamond terminated by oxygen containing functional groups , 2014 .

[70]  Mauro Tonelli,et al.  Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals. , 2014, Optics express.

[71]  Neil B. Manson,et al.  Electron–phonon processes of the silicon-vacancy centre in diamond , 2014, 1411.2871.

[72]  J. Angus Diamond synthesis by chemical vapor deposition: The early years , 2014 .

[73]  Á. Gali,et al.  Single nickel-related defects in molecular-sized nanodiamonds for multicolor bioimaging: an ab initio study. , 2014, Nanoscale.

[74]  Y. Fei,et al.  Size tunable synthesis of solution processable diamond nanocrystals. , 2014, Chemical communications.

[75]  Igor Aharonovich,et al.  Diamond Nanophotonics , 2014, 1408.5451.

[76]  M. Doherty,et al.  All-optical thermometry and thermal properties of the optically detected spin resonances of the NV(-) center in nanodiamond. , 2014, Nano letters.

[77]  M. Proskurnin,et al.  Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy , 2014 .

[78]  Haijun Yu,et al.  The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. , 2014, Biomaterials.

[79]  Jianping Yin,et al.  Laser cooling of Yb³⁺-doped LuLiF₄ crystal. , 2014, Optics letters.

[80]  Mansoor Sheik-Bahae,et al.  Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K. , 2014, Optics express.

[81]  M. Doherty,et al.  Electronic structure of the negatively charged silicon-vacancy center in diamond , 2013, 1310.3131.

[82]  Ilmo Sildos,et al.  Molecular-sized fluorescent nanodiamonds. , 2014, Nature nanotechnology.

[83]  Xin-lu Zhang,et al.  Role of upconversion in optical refrigeration: A theoretical study of laser cooling with Ho 3+ doped fluoride crystals , 2013 .

[84]  K. Miura,et al.  Simple synthesis of ultra-small nanodiamonds with tunable size and photoluminescence , 2013 .

[85]  D. Kilin,et al.  DFT Calculation of Russell–Saunders Splitting for Lanthanide Ions Doped in Hexagonal (β)-NaYF4 Nanocrystals , 2013 .

[86]  Jun Zhang,et al.  Laser cooling of CdS nanobelts: thickness matters. , 2013, Optics express.

[87]  M. V. Baidakova,et al.  Structure of nanodiamonds prepared by laser synthesis , 2013 .

[88]  Jeffrey G. Cederberg,et al.  Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling , 2013 .

[89]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[90]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[91]  Markus P. Hehlen,et al.  50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application , 2013 .

[92]  Xin-lu Zhang,et al.  Energy transfer enhanced laser cooling in Ho 3+ and Tm 3+ -codoped lithium yttrium fluoride , 2013 .

[93]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[94]  Qihua Xiong,et al.  Laser cooling of a semiconductor by 40 kelvin , 2013, Nature.

[95]  A. Mohtashami,et al.  Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments , 2012, 1212.5172.

[96]  Qiaoqin Yang,et al.  Study of nanocrystalline diamond synthesis in MPCVD by bias enhanced nucleation and growth , 2012 .

[97]  W. Feng,et al.  Investigation of energy levels and local lattice for LuLiF4: Yb3+ laser crystal , 2012 .

[98]  Daniel Jaque,et al.  Luminescence nanothermometry. , 2012, Nanoscale.

[99]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[100]  Dean Ho,et al.  Multimodal Nanodiamond Drug Delivery Carriers for Selective Targeting, Imaging, and Enhanced Chemotherapeutic Efficacy , 2011, Advanced materials.

[101]  Mansoor Sheik-Bahae,et al.  Local laser cooling of Yb:YLF to 110 K. , 2011, Optics express.

[102]  L. Nittler,et al.  SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND , 2011 .

[103]  Yan-Kai Tzeng,et al.  Nonblinking green emission from single H3 color centers in nanodiamonds , 2011 .

[104]  T. Laurence,et al.  Synthesis and characterization of a nanocrystalline diamond aerogel , 2011, Proceedings of the National Academy of Sciences.

[105]  Lilia Coronato Courrol,et al.  Fluorescence Properties of Colour Centres Produced by Ultrashort Laser Irradiation in LiF Crystals , 2010 .

[106]  D. D. Awschalom,et al.  Quantum computing with defects , 2010, Proceedings of the National Academy of Sciences.

[107]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids to cryogenic temperatures , 2010 .

[108]  Mansoor Sheik-Bahae,et al.  Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry , 2010 .

[109]  Markus P. Hehlen,et al.  Crystal-field effects in fluoride crystals for optical refrigeration , 2010, OPTO.

[110]  David R. Clarke,et al.  Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry , 2009 .

[111]  A. Mebel,et al.  Quantum Chemical Modeling of Photoabsorption Properties of Two- and Three-Nitrogen Vacancy Point Defects in Diamond , 2009 .

[112]  Mansoor Sheik-Bahae,et al.  Fast differential luminescence thermometry , 2009, OPTO.

[113]  K. Masenelli-Varlot,et al.  Nanodiamond synthesis by pulsed laser ablation in liquids , 2009 .

[114]  Huan-Cheng Chang,et al.  Preparation and characterization of green fluorescent nanodiamonds for biological applications , 2009 .

[115]  Mansoor Sheik-Bahae,et al.  Optical refrigeration : science and applications of laser cooling of solids , 2009 .

[116]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[117]  J. Khurgin Role of bandtail states in laser cooling of semiconductors , 2008 .

[118]  L Bonelli,et al.  Diode-pumped passively mode-locked Yb:YLF laser. , 2008, Optics express.

[119]  Mansoor Sheik-Bahae,et al.  Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8. , 2008, Optics express.

[120]  G. Scarsbrook,et al.  Unlocking diamond's potential as an electronic material , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[121]  K. Holt Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[122]  Markus P. Hehlen,et al.  Model of laser cooling in theYb3+-doped fluorozirconate glass ZBLAN , 2007 .

[123]  Lilia Coronato Courrol,et al.  Study of color centers produced in thulium doped YLF crystals irradiated by electron beam and femtosecond laser pulses , 2007 .

[124]  M. Sheik-Bahae,et al.  Laser cooling of solids , 2009 .

[125]  J. C. Madaleno,et al.  Nitrogen and hydrogen related infrared absorption in CVD diamond films , 2006 .

[126]  N. Kwong,et al.  Large excitonic enhancement of optical refrigeration in semiconductors. , 2006, Physical review letters.

[127]  Yury Gogotsi,et al.  Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. , 2006, Journal of the American Chemical Society.

[128]  Mauro Tonelli,et al.  Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal , 2006 .

[129]  Rolindes Balda,et al.  Anti-stokes laser cooling in bulk erbium-doped materials. , 2006, Physical review letters.

[130]  M. Kaviany,et al.  Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders , 2006 .

[131]  E. Pestryakov,et al.  Color centers in diamond crystals: Their potential use in tunable and femtosecond lasers , 2006 .

[132]  Taiju Tsuboi,et al.  Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method , 2006 .

[133]  Mansoor Sheik-Bahae,et al.  Differential luminescence thermometry in semiconductor laser cooling , 2006, SPIE OPTO.

[134]  Lilia Coronato Courrol,et al.  Color center production by femtosecond-pulse laser irradiation in fluoride crystals , 2006 .

[135]  A. Neves,et al.  Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films , 2005 .

[136]  S. Greenfield,et al.  Cooling to 208K by optical refrigeration , 2005 .

[137]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[138]  Roger M. Wood,et al.  Optical properties of diamond: a data handbook: A.M. Zaitsev; University of Bochum, Germany, Springer, Berlin, 2001, p. 502, price £74.00 hardback, ISBN 3-540-66582-X , 2004 .

[139]  M. Sheik-Bahae,et al.  Can laser light cool semiconductors? , 2004, Physical review letters.

[140]  Rolindes Balda,et al.  Upconversion processes in Er 3 + -doped KPb 2 Cl 5 , 2004 .

[141]  P. May,et al.  Production of nanocrystalline diamond by laser ablation at the solid/liquid interface , 2004 .

[142]  U. Singh,et al.  Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4 , 2004 .

[143]  T. Kamiya,et al.  Strong anti-Stokes luminescence from H+-irradiated diamond , 2003 .

[144]  S. Greenfield,et al.  Advances in Laser Cooling of Thulium-Doped Glass , 2003 .

[145]  M. F. Reid,et al.  Perturbation expansions and gauge choices in Judd—Ofelt theory , 2003 .

[146]  A. García-Adeva,et al.  Anti-Stokes laser cooling in Yb(3+)-doped KPb(2) Cl(5) crystal. , 2002, Optics letters.

[147]  Joseph J. Brown,et al.  Measurements of optical refrigeration in ytterbium-doped crystals , 2001 .

[148]  R. K. Mohapatra,et al.  History of trace gases in presolar diamonds inferred from ion-implantation experiments , 2001, Nature.

[149]  Philippe Goldner,et al.  Effect of rare earth impurities on fluorescent cooling in ZBLAN glass , 2001 .

[150]  H. Rubinsztein-Dunlop,et al.  Laser cooling of a solid from ambient temperature , 2001 .

[151]  J. Adam,et al.  Anti-Stokes laser-induced internal cooling of Yb 3+ -doped glasses , 2000 .

[152]  Epstein,et al.  Observation of anti-stokes fluorescence cooling in thulium-doped glass , 2000, Physical review letters.

[153]  R. Tilley,et al.  Colour and the Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour , 2000 .

[154]  P. May Diamond thin films: a 21st-century material , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[155]  D. Hurle A COMPREHENSIVE THERMODYNAMIC ANALYSIS OF NATIVE POINT DEFECT AND DOPANT SOLUBILITIES IN GALLIUM ARSENIDE , 1999 .

[156]  T. R. Gosnell,et al.  Laser cooling of a solid by 65K starting from room temperature. , 1997, Optics letters.

[157]  Steven R. Bowman,et al.  Lasers without internal heat generation , 1999 .

[158]  B. C. Edwards,et al.  Spectroscopic evaluation of Yb/sup 3+/-doped glasses for optical refrigeration , 1998 .

[159]  T. H. Gfroerer,et al.  External radiative quantum efficiency of 96% from a GaAs / GaInP heterostructure , 1997 .

[160]  P. Goldner,et al.  Application of standard and modified Judd–Ofelt theories to a praseodymium‐doped fluorozirconate glass , 1996 .

[161]  A. Badzian,et al.  Defects in CVD diamonds , 1996 .

[162]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[163]  A. Meijerink,et al.  THE VARIATION OF THE ELECTRON-PHONON COUPLING STRENGTH THROUGH THE TRIVALENT LANTHANIDE ION SERIES , 1995 .

[164]  T. R. Gosnell,et al.  Observation of laser-induced fluorescent cooling of a solid , 1995, Nature.

[165]  Kenneth T. V. Grattan,et al.  Fiber Optic Fluorescence Thermometry , 1994 .

[166]  M. Falconieri,et al.  Effects of co-dopant concentrations and excitation conditions on the 2 μm fluorescence dynamics in Tm, Ho:YLF crystals , 1994 .

[167]  M. W. Moore,et al.  OH absorption in the low loss window of ZBLAN(P) glass fibre , 1993 .

[168]  Bruce H. T. Chai,et al.  Growth of high-quality single crystals of KYF4 by TSSG method , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[169]  Y. Q. Jia,et al.  CRYSTAL RADII AND EFFECTIVE IONIC-RADII OF THE RARE-EARTH IONS , 1991 .

[170]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[171]  Richard K. Ahrenkiel,et al.  Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces , 1989 .

[172]  E. Heilweil,et al.  Time‐resolved measurements of OH(v=1) vibrational relaxation on SiO2 surfaces: Isotope and temperature dependence , 1986 .

[173]  S. Rand,et al.  Visible color-center laser in diamond. , 1985, Optics letters.

[174]  T. Kuech,et al.  Mechanism of carbon incorporation in MOCVD GaAs , 1984 .

[175]  D W Goodwin,et al.  Optical Spectra of Transparent Rare Earth Compounds , 1979 .

[176]  J. Geusic,et al.  Optical Refrigeration in Nd-Doped Yttrium Aluminum Garnet , 1968 .

[177]  H. Moos,et al.  MULTIPHONON ORBIT-LATTICE RELAXATION OF EXCITED STATES OF RARE-EARTH IONS IN CRYSTALS. , 1968 .

[178]  Alfred Kastler,et al.  Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique , 1950 .

[179]  C. Gorter,et al.  On the intensities and the multipole character in the spectra of the rare earth ions , 1945 .

[180]  G. Racah,et al.  Theory of Complex Spectra. IV , 1942 .

[181]  J. V. Vleck The Puzzle of Rare-earth Spectra in Solids. , 1937 .

[182]  P. Pringsheim Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung , 1929 .

[183]  Smithson Tennant IV. On the nature of the diamond , 1797, Philosophical Transactions of the Royal Society of London.