The global non-entropic arrow of time: from global geometrical asymmetry to local energy flow

Since the nineteenth century, the problem of the arrow of time has been traditionally analyzed in terms of entropy by relating the direction past-to-future to the gradient of the entropy function of the universe. In this paper, we reject this traditional perspective and argue for a global and non-entropic approach to the problem, according to which the arrow of time can be defined in terms of the geometrical properties of spacetime. In particular, we show how the global non-entropic arrow can be transferred to the local level, where it takes the form of a non-spacelike local energy flow that provides the criterion for breaking the symmetry resulting from time-reversal invariant local laws.

[1]  The arrow of time , 1976 .

[2]  A. Bohm,et al.  The preparation-registration arrow of time in quantum mechanics , 1994 .

[3]  Stephen G. Brush,et al.  Nineteenth-Century Physics. (Book Reviews: The Kind of Motion We Call Heat. A History of the Kinetic Theory of Gases in the 19th Century) , 1978 .

[4]  Time's Arrow and the Structure of Spacetime , 1979, Philosophy of Science.

[5]  H. Price Time's arrow and Archimedes' point new directions for the physics of time , 1997 .

[6]  L. Elton,et al.  THE DIRECTION OF TIME , 1978 .

[7]  Lawrence Sklar,et al.  Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics , 1993 .

[8]  R. Lindsay,et al.  The Conceptual Foundations of the Statistical Approach in Mechanics , 1959 .

[9]  Roberto Torretti,et al.  Relativity and geometry , 1984 .

[10]  Manuel Gadella,et al.  Dirac Kets, Gamow Vectors and Gel'fand triplets : the rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin , 1989 .

[11]  O. Lombardi,et al.  The Global Arrow of Time as a Geometrical Property of the Universe , 2003 .

[12]  Lawrence Sklar,et al.  Space, Time, and Spacetime , 1974 .

[13]  Lawrence Sklar,et al.  Physics and Chance , 1993 .

[14]  Herbert Sachs,et al.  The Physics of Time Reversal , 1987 .

[15]  R. Penrose Singularities and time-asymmetry. , 1979 .

[16]  Arno R Bohm,et al.  Quantum Mechanics: Foundations and Applications , 1993 .

[17]  Lawrence B. Sklar Philosophical Problems of Space and Time , 1977 .

[18]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[19]  Global time asymmetry as a consequence of a wave packets theorem , 2001, math-ph/0103040.

[20]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[21]  J. Earman An Attempt to Add a Little Direction to "The Problem of the Direction of Time" , 1974, Philosophy of Science.

[22]  Jonathan J. Halliwell,et al.  Physical origins of time asymmetry , 1995 .

[23]  Ann K. Stehney,et al.  Geometrical Methods of Mathematical Physics by Bernard F. Schutz , 1980 .

[24]  J. Wheeler,et al.  The Physics of Time Asymmetry , 1974 .

[25]  M. Castagnino,et al.  MINIMAL IRREVERSIBLE QUANTUM MECHANICS : PURE-STATE FORMALISM , 1997 .

[26]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[27]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[28]  林 憲二,et al.  C. W. Misner, K. S. Thorne. and J. A. Wheeler : Gravitation, W. H. Freeman, San Francisco, 1973, 1279ページ, 26×21cm, $39.50. , 1975 .

[29]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[30]  J. Earman What time reversal invariance is and why it matters , 2002 .

[31]  O. Lombardi,et al.  The cosmological origin of time asymmetry , 2002, quant-ph/0211162.

[32]  Michael C. Mackey,et al.  The dynamic origin of increasing entropy , 1989 .