A haar wavelet approximation for two-dimensional time fractional reaction–subdiffusion equation

In this study, we established a wavelet method, based on Haar wavelets and finite difference scheme for two-dimensional time fractional reaction–subdiffusion equation. First by a finite difference approach, time fractional derivative which is defined in Riemann–Liouville sense is discretized. After time discretization, spatial variables are expanded to truncated Haar wavelet series, by doing so a fully discrete scheme obtained whose solution gives wavelet coefficients in wavelet series. Using these wavelet coefficients approximate solution constructed consecutively. Feasibility and accuracy of the proposed method is shown on three test problems by measuring error in $$L_{\infty }$$L∞ norm. Further performance of the method is compared with other methods available in literature such as meshless-based methods and compact alternating direction implicit methods.

[1]  Zhi Shi,et al.  Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method , 2012 .

[2]  Alaattin Esen,et al.  A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations , 2013 .

[3]  Ram Jiwari,et al.  A hybrid numerical scheme for the numerical solution of the Burgers' equation , 2015, Comput. Phys. Commun..

[4]  Fawang Liu,et al.  Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.

[5]  Wen-June Wang,et al.  State analysis of time-varying singular bilinear systems via Haar wavelets , 2000 .

[6]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[7]  Mujeeb ur Rehman,et al.  Haar wavelet-quasilinearization technique for fractional nonlinear differential equations , 2013, Appl. Math. Comput..

[8]  Fawang Liu,et al.  ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation , 2008 .

[9]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[10]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[11]  Siraj-ul-Islam,et al.  Numerical solution of two-dimensional elliptic PDEs with nonlocal boundary conditions , 2015, Comput. Math. Appl..

[12]  Zhi-Zhong Sun,et al.  Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation , 2014, J. Sci. Comput..

[13]  İbrahim Çelik,et al.  Haar wavelet approximation for magnetohydrodynamic flow equations , 2013 .

[14]  Huiya Dai,et al.  Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation , 2014 .

[15]  A. Esen,et al.  A unified approach for the numerical solution of time fractional Burgers’ type equations , 2016 .

[16]  Alaattin Esen,et al.  A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation , 2015, Journal of Mathematical Chemistry.

[17]  Ülo Lepik Solving PDEs with the aid of two-dimensional Haar wavelets , 2011, Comput. Math. Appl..

[18]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[19]  Mehdi Dehghan,et al.  A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method , 2015, Comput. Math. Appl..

[20]  Santanu Saha Ray,et al.  Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system , 2013, Appl. Math. Comput..

[21]  Manoj Kumar,et al.  A composite numerical scheme for the numerical simulation of coupled Burgers' equation , 2014, Comput. Phys. Commun..

[22]  Weiwei Zhao,et al.  Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations , 2010, Appl. Math. Comput..

[23]  Siraj-ul-Islam,et al.  A new approach for numerical solution of integro-differential equations via Haar wavelets , 2013, Int. J. Comput. Math..

[24]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[26]  Wen Chen,et al.  Numerical solution of fractional telegraph equation by using radial basis functions , 2014 .

[27]  Fawang Liu,et al.  Implicit difference approximation for the two-dimensional space-time fractional diffusion equation , 2007 .

[28]  Xuan Zhao,et al.  Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..

[29]  M. Dehghan,et al.  The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems , 2011 .

[30]  Bo Yu,et al.  A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation , 2014, Numerical Algorithms.

[31]  C. F. Chen,et al.  Wavelet approach to optimising dynamic systems , 1999 .

[32]  Ram Jiwari,et al.  A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation , 2012, Comput. Phys. Commun..

[33]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[34]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[35]  Wen-June Wang,et al.  Haar wavelet approach to nonlinear stiff systems , 2001 .

[36]  Fawang Liu,et al.  Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .

[37]  Ülo Lepik,et al.  Application of the Haar wavelet transform to solving integral and differential equations , 2007, Proceedings of the Estonian Academy of Sciences. Physics. Mathematics.

[38]  Chun-Hui Hsiao,et al.  Haar wavelet direct method for solving variational problems , 2004, Math. Comput. Simul..

[39]  Mehdi Dehghan,et al.  Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method , 2015, J. Comput. Appl. Math..

[40]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[41]  Harpreet Kaur,et al.  Haar wavelet-based numerical investigation of coupled viscous Burgers' equation , 2015, Int. J. Comput. Math..

[42]  Yanhua Xu,et al.  Haar wavelets method for solving Poisson equations with jump conditions in irregular domain , 2016, Adv. Comput. Math..

[43]  Rahmat Ali Khan,et al.  Numerical solutions to initial and boundary value problems for linear fractional partial differential equations , 2013 .

[44]  Siraj-ul-Islam,et al.  Wavelets collocation methods for the numerical solution of elliptic BV problems , 2013 .

[45]  Alemdar Hasanov Simultaneous determination of the source terms in a linear hyperbolic problem from the final overdetermination , 2008 .

[46]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[47]  Siraj-ul-Islam,et al.  New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets , 2013, J. Comput. Appl. Math..

[48]  Ülo Lepik,et al.  Numerical solution of differential equations using Haar wavelets , 2005, Math. Comput. Simul..

[49]  Alaattin Esen,et al.  Numerical Solutions of Regularized Long Wave Equation By Haar Wavelet Method , 2016 .

[50]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[51]  Fawang Liu,et al.  Finite Difference Approximation for Two-Dimensional Time Fractional Diffusion Equation , 2007 .

[52]  CHANG-MING CHEN,et al.  Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation , 2012, Math. Comput..

[53]  Mehdi Dehghan,et al.  A new operational matrix for solving fractional-order differential equations , 2010, Comput. Math. Appl..

[54]  Harpreet Kaur,et al.  Haar wavelet approximate solutions for the generalized Lane-Emden equations arising in astrophysics , 2013, Comput. Phys. Commun..

[55]  Changrong Yi,et al.  Haar wavelet method for solving lumped and distributed-parameter systems , 1997 .

[56]  Ülo Lepik,et al.  Numerical solution of evolution equations by the Haar wavelet method , 2007, Appl. Math. Comput..

[57]  Manoj Kumar,et al.  Numerical simulation of second-order hyperbolic telegraph type equations with variable coefficients , 2015, Comput. Phys. Commun..

[58]  S. Ray Exact solutions for time-fractional diffusion-wave equations by decomposition method , 2006 .

[59]  A. Esen,et al.  Numerical Solutions of Fractional System of PartialDifferential Equations By HaarWavelets , 2015 .

[60]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[61]  Jiunn-Lin Wu,et al.  A wavelet operational method for solving fractional partial differential equations numerically , 2009, Appl. Math. Comput..

[62]  Jun Huang,et al.  Wavelet operational matrix method for solving fractional differential equations with variable coefficients , 2014, Appl. Math. Comput..

[63]  Alaattin Esen,et al.  A Haar wavelet collocation method for coupled nonlinear Schrödinger–KdV equations , 2016 .

[64]  Ülo Lepik,et al.  Solving fractional integral equations by the Haar wavelet method , 2009, Appl. Math. Comput..

[65]  Siraj-ul-Islam,et al.  A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations , 2014, J. Comput. Appl. Math..

[66]  Siraj-ul-Islam,et al.  An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders , 2014, J. Comput. Appl. Math..

[67]  F. Mohammadi Haar Wavelets Approach For Solving Multidimensional Stochastic Itô-Volterra Integral Equations∗ , 2015 .

[68]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[69]  Lifeng Wang,et al.  Haar wavelet method for solving fractional partial differential equations numerically , 2014, Appl. Math. Comput..

[70]  M. Dehghan,et al.  The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients , 2012 .