Smart Materials in Smart Structural Systems

: Smart materials respond to the change of environment and stimuli (temperature, pressure, electric field, magnetic field etc.) and activate their functions according to the change. To minimize the deterioration of infrastructure, smart materials are one of the best tools. This paper reviews research into the application of six important smart materials—piezoelectric materials, fiber Bragg grating, magnetorheological (MR) fluid, carbon nanotubes, shape memory alloy, and rubber bearing in infrastructural management—by focusing on the literature review, basic useful characteristics and basic information collection of smart materials. Among them the study focuses on the introduction of smart materials, special advantageous characteristics and their application on vibration control, seismic control, structural health monitoring, measuring cracking, corrosion, strains, and so on of the structures.

[1]  Tommy H.T. Chan,et al.  Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge : Background and experimental observation , 2006 .

[2]  Linsheng Huo,et al.  Advances in Structural Control in Civil Engineering in China , 2010 .

[3]  Fanis Giannopoulos,et al.  ACTIVE CONTROL OF TWO-CABLE-STAYED BRIDGE , 1979 .

[4]  Limei Xu,et al.  Modeling and vibration control of a flexible structure using linearized piezoeeramic actuators , 2004, 2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings..

[6]  J. N. Yang,et al.  Active Control and Stability of Cable-Stayed Bridge , 1979 .

[7]  Gangbing Song,et al.  Vibration control of civil structures using piezoceramic smart materials: A review , 2006 .

[8]  Shirley J. Dyke,et al.  Experimental verification of multiinput seismic control strategies for smart dampers , 2001 .

[9]  Mohamed Saafi,et al.  Wireless and embedded carbon nanotube networks for damage detection in concrete structures , 2009, Nanotechnology.

[10]  Frank Claeyssen,et al.  Amplified piezoelectric actuators: from aerospace to underwater applications , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  J. H. Griffin,et al.  On the dynamic response of a suspended cable , 1976 .

[12]  Yong Zhao,et al.  Recent advancements in optical fiber hydrogen sensors , 2017 .

[13]  Hyung-Jo Jung,et al.  CONTROL OF SEISMICALLY EXCITED CABLE-STAYED BRIDGE EMPLOYING MAGNETORHEOLOGICAL FLUID DAMPERS , 2003 .

[14]  Mark J. Schulz,et al.  Structural Health Monitoring Based on Electrical Impedance of a Carbon Nanotube Neuron , 2006 .

[15]  Raymond M. Measures,et al.  A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge , 1995 .

[16]  H. M. Irvine,et al.  On the Free Vibrations of Suspended Cables with Frictional End Restraint , 1990 .

[17]  Vineet Sethi,et al.  Multimodal Vibration Control of a Flexible Structure using Piezoceramic Sensor and Actuator , 2008 .

[18]  Bijan Samali,et al.  An experimental study of a five storey steel frame using semi-active control system , 2003 .

[19]  Maurizio Indirli,et al.  Shape Memory Alloy Devices for the Structural Improvement of Masonry Heritage Structures , 2008 .

[20]  Roberto T. Leon,et al.  Steel Beam-Column Connections using Shape Memory Alloys , 2004 .

[21]  Ezio Santagata,et al.  Rheological Characterization of Bituminous Binders Modified with Carbon Nanotubes , 2012 .

[22]  James M. W. Brownjohn,et al.  Development of fiber Bragg grating sensors for monitoring civil infrastructure , 2005 .

[23]  R. Measures,et al.  Fiber-optic Bragg grating sensors for bridge monitoring , 1997 .

[24]  Christoph Czaderski,et al.  Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas , 2005 .

[25]  Shirley J. Dyke,et al.  An experimental study of MR dampers for seismic protection , 1998 .

[26]  Reginald DesRoches,et al.  Seismic retrofit of simply supported bridges using shape memory alloys , 2002 .

[27]  J. Xie,et al.  Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. , 2009, Nano letters.

[28]  E. Santagata,et al.  Fatigue properties of bituminous binders reinforced with carbon nanotubes , 2015 .

[29]  Sandra L. Berger Massachusetts , 1896, The Journal of comparative medicine and veterinary archives.

[30]  Donatello Cardone,et al.  Shaking Table Tests of R/C Frames with various Passive Control Systems , 2000 .

[31]  Moncef L. Nehdi,et al.  Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review , 2007 .

[32]  A. Méndez Fiber Bragg grating sensors: a market overview , 2007, European Workshop on Optical Fibre Sensors.

[33]  H. M. Irvine,et al.  The linear theory of free vibrations of a suspended cable , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  G Song,et al.  Active vibration control of a space truss using a lead zirconate titanate stack actuator , 2001 .

[35]  Li Hu,et al.  Transformation twinning and deformation twinning of NiTi shape memory alloy , 2016 .

[36]  James Conner Poynor Innovative Designs for Magneto-Rheological Dampers , 2001 .

[37]  Baojin Peng,et al.  Temperature-compensated high pressure FBG sensor with a bulk-modulus and self-demodulation method , 2005 .

[38]  Billie F. Spencer,et al.  Dynamic Modeling of Large-Scale Magnetorheological Damper Systems for Civil Engineering Applications , 2004 .

[39]  Masaomi Teshigawara,et al.  Development of smart systems for building structures , 2000, Smart Structures.

[40]  Sami H. Rizkalla,et al.  Application and characterization of intracore grating sensors in a CFRP prestressed concrete girder , 1994, Smart Structures.