BBox-Guided Segmentor: Leveraging expert knowledge for accurate stroke lesion segmentation using weakly supervised bounding box prior

[1]  James Ze Wang,et al.  Patcher: Patch Transformers with Mixture of Experts for Precise Medical Image Segmentation , 2022, MICCAI.

[2]  Jonathon S. Cummock,et al.  Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome , 2022, Stroke.

[3]  Rizwan Kalani,et al.  Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association , 2022, Circulation.

[4]  A. Gramfort,et al.  A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms , 2021, Scientific Data.

[5]  Xavier Lladó,et al.  Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks , 2021, Comput. Medical Imaging Graph..

[6]  Anne L. Martel,et al.  Loss odyssey in medical image segmentation , 2021, Medical Image Anal..

[7]  Adrián Colomer,et al.  WeGleNet: A weakly-supervised convolutional neural network for the semantic segmentation of Gleason grades in prostate histology images , 2021, Comput. Medical Imaging Graph..

[8]  Xin Liu,et al.  Annotation-efficient deep learning for automatic medical image segmentation , 2020, Nature Communications.

[9]  Lequan Yu,et al.  Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for Annotation-efficient Cardiac Segmentation , 2020, MICCAI.

[10]  JIE YANG,et al.  Ischemic Stroke Lesion Segmentation Using Multi-Plane Information Fusion , 2020, IEEE Access.

[11]  Sung Il Hwang,et al.  A Weak and Semi-supervised Segmentation Method for Prostate Cancer in TRUS Images , 2020, Journal of Digital Imaging.

[12]  Jose Dolz,et al.  Bounding boxes for weakly supervised segmentation: Global constraints get close to full supervision , 2020, MIDL.

[13]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[14]  Yong Xia,et al.  D-UNet: A Dimension-Fusion U Shape Network for Chronic Stroke Lesion Segmentation , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[15]  Hyunna Lee,et al.  Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms , 2019, Korean journal of radiology.

[16]  Qiegen Liu,et al.  X-Net: Brain Stroke Lesion Segmentation Based on Depthwise Separable Convolution and Long-range Dependencies , 2019, MICCAI.

[17]  J. Wassélius,et al.  Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data. , 2019, Stroke.

[18]  Hao Chen,et al.  Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[19]  Dinggang Shen,et al.  Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation , 2017, Comput. Medical Imaging Graph..

[20]  Sébastien Ourselin,et al.  Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning , 2017, IEEE Transactions on Medical Imaging.

[21]  Jiaquan Xu,et al.  Deaths: Final Data for 2012. , 2015, National vital statistics reports : from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System.

[22]  Youjie Zhou,et al.  Loosecut: Interactive image segmentation with loosely bounded boxes , 2015, 2017 IEEE International Conference on Image Processing (ICIP).

[23]  Liu Jin,et al.  A survey of MRI-based brain tumor segmentation methods , 2014 .

[24]  Laura W. Bancroft,et al.  Imaging in Acute Stroke , 2011, The western journal of emergency medicine.

[25]  Joy Adamson,et al.  Is stroke the most common cause of disability? , 2004, Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association.

[26]  D. Tong,et al.  Detection of Diffusion-Weighted MRI Abnormalities in Patients With Transient Ischemic Attack: Correlation With Clinical Characteristics , 2003, Stroke.

[27]  Kechen Song,et al.  An image-level weakly supervised segmentation method for No-service rail surface defect with size prior , 2022 .

[28]  Yung-Yu Chuang,et al.  Weakly Supervised Instance Segmentation using the Bounding Box Tightness Prior , 2019, NeurIPS.