Localization in Indoor Environments Using a Panoramic Laser Range Finder

The capability of self-localization is a prerequisite for a mobile robot to operate reasonably and to fulfill useful tasks in its environment. This work presents an approach that allows for self-localization in unmodified indoor environments even under the condition that no a-priori knowledge about the surroundings is available. The only sensor employed in this framework is a commercial, off-the-shelf laser range finder providing panoramic scans of its surroundings. The scans taken from different positions in the environment are superimposed using a DP-algorithm based scan matching procedure. A subsequent quantitative analysis performs self-localization of the mobile robot and supports the construction of a graph based map of the environment.

[1]  Wolfgang D. Rencken,et al.  Concurrent localisation and map building for mobile robots using ultrasonic sensors , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[2]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[4]  M. Maes,et al.  On a Cyclic String-To-String Correction Problem , 1990, Inf. Process. Lett..

[5]  Wolfram Burgard,et al.  An experimental comparison of localization methods , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[6]  Liqiang Feng,et al.  Measurement and correction of systematic odometry errors in mobile robots , 1996, IEEE Trans. Robotics Autom..

[7]  Johann Borenstein,et al.  Internal correction of dead-reckoning errors with the smart encoder trailer , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[8]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[10]  Wen-Hsiang Tsai,et al.  Attributed String Matching with Merging for Shape Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[13]  Theodosios Pavlidis,et al.  Segmentation of Plane Curves , 1974, IEEE Transactions on Computers.

[14]  Roland Siegwart,et al.  Feature extraction and scene interpretation for map-based navigation and map building , 1998, Other Conferences.

[15]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[16]  Darius Burschka,et al.  Autonome Exploration von Innenräumen mit der Multisensorik-Plattform MARVIN , 1998, AMS.

[17]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[18]  Wolfram Burgard,et al.  Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.

[19]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[20]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[21]  R. Simmons,et al.  Probabilistic Navigation in Partially Observable Environments , 1995 .

[22]  Åke Wernersson,et al.  On robot navigation using identical landmarks: integrating measurements from a time-of-flight laser , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[23]  Jens Gregor,et al.  Efficient dynamic programming alignment of cyclic strings by shift elimination , 1996, Pattern Recognit..

[24]  Alexa Hauck,et al.  A hierarchical world model with sensor- and task-specific features , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[25]  Nadine N. Tschichold-Gürman,et al.  Learning control and localisation of mobile robots , 1994, AMS.

[26]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[27]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[28]  Gerhard Weiss,et al.  A map based on laserscans without geometric interpretation , 1999 .

[29]  Jens-Steffen Gutmann,et al.  Robuste Navigation autonomer mobiler Systeme , 2000, DISKI.

[30]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[31]  Jens Gregor,et al.  Dynamic Programming Alignment of Sequences Representing Cyclic Patterns , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Rae-Hong Park,et al.  Robust Adaptive Segmentation of Range Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Jin S. Lee,et al.  A stochastic environment modelling method for mobile robot by using 2-D laser scanner , 1997, Proceedings of International Conference on Robotics and Automation.

[34]  Uwe D. Hanebeck,et al.  Efficient method for simultaneous map building and localization , 2001, SPIE Defense + Commercial Sensing.

[35]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[36]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1992 .

[37]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[38]  Wolfram Burgard,et al.  The Interactive Museum Tour-Guide Robot , 1998, AAAI/IAAI.

[39]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[40]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[41]  Günther Schmidt,et al.  Building a global map of the environment of a mobile robot: the importance of correlations , 1997, Proceedings of International Conference on Robotics and Automation.

[42]  Uwe R. Zimmer,et al.  Self-Localization in Dynamic Environments , 1995, BIES.

[43]  Alexa Hauck,et al.  Recognising Objects by their Silhouette , 1998 .

[44]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[45]  Bernhard Nebel,et al.  Fast, accurate, and robust self-localization in polygonal environments , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[46]  Leslie Pack Kaelbling,et al.  Learning Topological Maps with Weak Local Odometric Information , 1997, IJCAI.

[47]  Ewald von Puttkamer,et al.  Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[48]  Tobias Einsele Real-time self-localization in unknown indoor environment using a panorama laser range finder , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[49]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[50]  Bernd Radig,et al.  Eine konfigurierbare Systemarchitektur zur geometrisch-topologischen Exploration von Innenräumen , 1999, AMS.

[51]  Patric Jensfelt,et al.  Feature based CONDENSATION for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[52]  Wolfram Burgard,et al.  Monte Carlo Localization with Mixture Proposal Distribution , 2000, AAAI/IAAI.

[53]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..

[54]  Aníbal Ollero,et al.  Map building for a mobile robot equipped with a 2D laser rangefinder , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[55]  Illah R. Nourbakhsh,et al.  Automatic Mapping of Dynamic Office Environments , 1999, Auton. Robots.

[56]  Wolfram Burgard,et al.  Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach , 1998, AAAI/IAAI.

[57]  A.-J. Baerveldt,et al.  Localization in changing environments by matching laser range scans , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).

[58]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.