Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix

Abstract A series of surface functionalized silica submicrospheres by distillation–precipitation polymerization were embedded into chitosan (CS) matrix to fabricate the hybrid membranes for direct methanol fuel cell (DMFC). SEM characterization indicated that the submicrospheres could disperse homogenously within the CS matrix via tuning the polymer/particle and particle/particle interfacial interactions. The incorporation of sulfonated silica and carboxylated silica led to the reduced fractional free volume ( FFV ), whereas the incorporation of quaternary aminated silica resulted in increased FFV in the hybrid membranes, which was confirmed by the free volume characteristics analysis using positron annihilation lifetime spectroscopy (PALS). The correlation between methanol crossover and FFV was established: the hybrid membranes with lower FFV displayed higher methanol resistance. Meanwhile, the correlation between the proton acceptor/donor capability and proton conductivity in the hybrid membranes was established. Compared with sulfonated silica and quaternary aminated silica, carboxylated silica possessed the optimum matching in proton acceptor and donor capabilities. Therefore, the membrane embedded with carboxylated silica displayed the highest proton conductivity. In particular, embedding carboxylated silica simultaneously reduced the methanol permeability by 63% and increased the proton conductivity by 40% in comparison with pure CS membrane.

[1]  Ronghuan He,et al.  Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors , 2003 .

[2]  B. Smitha,et al.  Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells , 2004 .

[3]  Baoyi Wang,et al.  Sorbitol-plasticized chitosan/zeolite hybrid membrane for direct methanol fuel cell , 2007 .

[4]  Xiangyang Zhou,et al.  Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells , 2002 .

[5]  W. H. Li,et al.  Electrochemical deposition of Copper on patterned Cu/Ta(N)/SiO2 surfaces for super filling of sub-micron features , 2001 .

[6]  V. Shahi,et al.  Phosphonic acid grafted bis(4-γ-aminopropyldiethoxysilylphenyl)sulfone (APDSPS)-poly(vinyl alcohol) cross-linked polyelectrolyte membrane impervious to methanol , 2008 .

[7]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[8]  M. Guiver,et al.  Influence of silica content in sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) hybrid membranes on properties for fuel cell application , 2006 .

[9]  S. Holmes,et al.  Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells , 2007 .

[10]  W. Koros,et al.  Non-ideal effects in organic-inorganic materials for gas separation membranes , 2005 .

[11]  V. Tricoli,et al.  Zeolite–Nafion composites as ion conducting membrane materials , 2003 .

[12]  Anita J. Hill,et al.  Effect of Nanoparticles on Gas Sorption and Transport in Poly(1-trimethylsilyl-1-propyne) , 2003 .

[13]  Jingtao Wang,et al.  Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell , 2008 .

[14]  Y. Ein‐Eli,et al.  Acid‐Functionalized Mesostructured Aluminosilica for Hydrophilic Proton Conduction Membranes , 2007 .

[15]  W. Smyrl,et al.  Polymer-zeolite composite membranes for direct methanol fuel cells , 2003 .

[16]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[17]  Zhenzhong Yang,et al.  General synthetic route toward functional hollow spheres with double-shelled structures. , 2005, Angewandte Chemie.

[18]  Jiujun Zhang,et al.  A review of polymer electrolyte membranes for direct methanol fuel cells , 2007 .

[19]  S. Moon,et al.  Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations , 2008 .

[20]  S. Srinivasan,et al.  A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes , 2003, physics/0310029.

[21]  Zhongyi Jiang,et al.  Hybrid Organic−Inorganic Membrane: Solving the Tradeoff between Permeability and Selectivity , 2005 .

[22]  C. Ma,et al.  A novel composite membranes based on sulfonated montmorillonite modified Nafion® for DMFCs , 2007 .

[23]  Xinlin Yang,et al.  Synthesis of core-corona polymer hybrids with a raspberry-like structure by the heterocoagulated pyridinium reaction. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[24]  A. Kornyshev,et al.  Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations , 2002 .

[25]  Xinlin Yang,et al.  Raspberry-like polymer/silica core-corona composite by self-assemble heterocoagulation based on a hydrogen-bonding interaction , 2008 .

[26]  Li Qingfeng,et al.  Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications , 2001 .

[27]  Jedeok Kim,et al.  Organic–Inorganic Hybrid Membranes for a PEMFC Operation at Intermediate Temperatures , 2006 .

[28]  B. Freeman,et al.  Water Sorption, Proton Conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic Acid (BES) , 2006 .

[29]  J. Ramı́rez-Salgado Study of basic biopolymer as proton membrane for fuel cell systems , 2007 .

[30]  S. Paddison,et al.  Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. , 2004, Chemical reviews.

[31]  Chang Houn Rhee,et al.  Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells , 2005 .

[32]  S. Mullens,et al.  Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes : Relation between the transport of gases and structural characteristics , 2006 .

[33]  A. Morin,et al.  Advanced Mesostructured Hybrid Silica−Nafion Membranes for High-Performance PEM Fuel Cell , 2008 .

[34]  S. Nair,et al.  Fabrication of polymer/selective-flake nanocomposite membranes and their use in gas separation , 2004 .

[35]  L. Madeira,et al.  Proton electrolyte membrane properties and direct methanol fuel cell performance: I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes , 2005 .

[36]  Xuejun Cui,et al.  Crosslinked SPEEK/AMPS blend membranes with high proton conductivity and low methanol diffusion coefficient for DMFC applications , 2007 .

[37]  San Ping Jiang,et al.  Layer‐by‐Layer Self‐Assembly of Composite Polyelectrolyte–Nafion Membranes for Direct Methanol Fuel Cells , 2006 .

[38]  S. Paddison,et al.  About the choice of the protogenic group in polymer electrolyte membranes: Ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. , 2006, Physical chemistry chemical physics : PCCP.

[39]  J. N. Barsema,et al.  Hybrid organic inorganic nylon-6/SiO2: Transport properties , 2004 .

[40]  Anita J. Hill,et al.  Sorption, Transport, and Structural Evidence for Enhanced Free Volume in Poly(4-methyl-2-pentyne)/Fumed Silica Nanocomposite Membranes , 2003 .

[41]  Ravindra Datta,et al.  Thermodynamics and Proton Transport in Nafion - III. Proton Transport in Nafion/Sulfated ZrO(2) Nanocomposite Membranes , 2005 .

[42]  A. V. Levich,et al.  Surface-Tension-Driven Phenomena , 1969 .

[43]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[44]  J. Kerres Development of ionomer membranes for fuel cells , 2001 .

[45]  Xinlin Yang,et al.  Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization , 2006 .

[46]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability , 2001 .

[47]  J. Maier,et al.  About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds , 2005 .

[48]  R. Behling,et al.  Preparation and characterization of thin-film zeolite–PDMS composite membranes☆ , 1992 .

[49]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[50]  K. Shea,et al.  Bridged polysilsesquioxanes. molecular-engineered hybrid organic-inorganic materials , 2001 .

[51]  S. Passerini,et al.  Solution-cast Nafion®/montmorillonite composite membrane with low methanol permeability , 2005 .

[52]  Zhongyi Jiang,et al.  Correlations between free volume characteristics and pervaporation permeability of novel PVA–GPTMS hybrid membranes , 2006 .

[53]  Wenzheng Li,et al.  Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell , 2006 .

[54]  L. Madeira,et al.  Proton electrolyte membrane properties and direct methanol fuel cell performance: II. Fuel cell performance and membrane properties effects , 2005 .

[55]  Yong-mei Wang,et al.  Facile synthesis of silica/polymer hybrid microspheres and hollow polymer microspheres , 2007 .

[56]  Chris Dotremont,et al.  Free volume and interstitial mesopores in silica filled poly(I-trimethylsilyl-l-propyne) nanocomposites , 2005 .

[57]  Yi-Ming Sun,et al.  Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells , 2007 .

[58]  Hiroyuki Uchida,et al.  Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal-Oxides: Experimental Analysis of the Self-Humidification and Suppression of Gas-Crossover in Fuel Cells , 1998 .

[59]  T. Zhao,et al.  Diphenylsilicate-incorporated Nafion® membranes for reduction of methanol crossover in direct methanol fuel cells , 2006 .

[60]  D. Seung,et al.  Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance , 2008 .

[61]  S. Greenbaum,et al.  Anhydrous proton-conducting polymeric electrolytes for fuel cells. , 2006, The journal of physical chemistry. B.