Efficient view-based 3d reflection symmetry detection

Symmetries exist in many 3D models while efficiently finding their symmetry planes is important and useful for many related applications. This paper presents a simple and efficient view-based reflection symmetry detection method based on the viewpoint entropy features of a set of sample views of a 3D model. Before symmetry detection, we align the 3D model based on the Continuous Principal Component Analysis (CPCA) method. To avoid the high computational load resulting from a directly combinatorial matching among the sample views, we develop a fast symmetry plane detection method by first generating a candidate symmetry plane based on a matching pair of sample views and then verifying whether the number of remaining matching pairs is within a minimum number. Experiments demonstrate better accuracy, efficiency, and flexibility of our algorithm than state-of-the-art approaches.

[1]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, ACM Trans. Graph..

[2]  Bo Li,et al.  3D model alignment based on minimum projection area , 2011, The Visual Computer.

[3]  Luc Van Gool,et al.  Computational Symmetry in Computer Vision and Computer Graphics , 2010, Found. Trends Comput. Graph. Vis..

[4]  Junjie Cao,et al.  Point Cloud Skeletons via Laplacian Based Contraction , 2010, 2010 Shape Modeling International Conference.

[5]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[6]  Yuriko Takeshima,et al.  A feature-driven approach to locating optimal viewpoints for volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[7]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[8]  H. L. Zou,et al.  Skewed rotational symmetry detection from a 2D line drawing of a 3D polyhedral object , 2006, Comput. Aided Des..

[9]  Derek Nowrouzezahrai,et al.  Multi‐objective shape segmentation and labeling , 2009, Comput. Graph. Forum.

[10]  Hao Zhang,et al.  Spectral global intrinsic symmetry invariant functions , 2014, Graphics Interface.

[11]  Zygmunt Pizlo,et al.  Detecting mirror-symmetry of a volumetric shape from its single 2D image , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[12]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[13]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[14]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[15]  Szymon Rusinkiewicz,et al.  Eurographics Symposium on Geometry Processing (2007) Symmetry-enhanced Remeshing of Surfaces , 2022 .

[16]  Dmitry B. Goldgof,et al.  Performance Evaluation of Object Detection and Tracking in Video , 2006, ACCV.

[17]  Thomas A. Funkhouser,et al.  Symmetry-Aware Mesh Processing , 2009, IMA Conference on the Mathematics of Surfaces.

[18]  François X. Sillion,et al.  Accurate detection of symmetries in 3D shapes , 2006, TOGS.

[19]  Daniel Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, ACM Trans. Graph..

[20]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[21]  Ligang Liu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, ACM Trans. Graph..

[22]  Hans-Peter Seidel,et al.  Shape Analysis with Subspace Symmetries , 2011, Comput. Graph. Forum.

[23]  Isabelle Bloch,et al.  Evaluation of the symmetry plane in 3D MR brain images , 2003, Pattern Recognit. Lett..

[24]  Anne Verroust-Blondet,et al.  Alignment of 3D models , 2009, Graph. Model..

[25]  Tadamasa Sawada,et al.  Visual detection of symmetry of 3D shapes. , 2010, Journal of vision.

[26]  Dietmar Saupe,et al.  3D Model Retrieval , 2001 .

[27]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[28]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[29]  Jun Li,et al.  Symmetry Hierarchy of Man‐Made Objects , 2011, Comput. Graph. Forum.

[30]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[31]  Leonidas J. Guibas,et al.  Partial and approximate symmetry detection for 3D geometry , 2006, ACM Trans. Graph..

[32]  Céline Loscos,et al.  3D Model Retrieval , 2013 .

[33]  Ioannis Pratikakis,et al.  ROSy+: 3D Object Pose Normalization Based on PCA and Reflective Object Symmetry with Application in 3D Object Retrieval , 2011, International Journal of Computer Vision.

[34]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, SIGGRAPH '06.

[35]  Alexander M. Bronstein,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.

[36]  D. Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, SIGGRAPH 2009.

[37]  Ligang Liu,et al.  Multi-scale partial intrinsic symmetry detection , 2012, ACM Trans. Graph..

[38]  Hans-Peter Seidel,et al.  Symmetry Detection Using Feature Lines , 2009, Comput. Graph. Forum.

[39]  H. L. Zou,et al.  Skewed mirror symmetry detection from a 2D sketch of a 3D model , 2005, GRAPHITE '05.

[40]  Afzal Godil,et al.  A New Shape Benchmark for 3D Object Retrieval , 2008, ISVC.

[41]  Atilla Baskurt,et al.  3D mirror symmetry detection using Hough transform , 2008, 2008 15th IEEE International Conference on Image Processing.

[42]  Mateu Sbert,et al.  Viewpoint Selection using Viewpoint Entropy , 2001, VMV.

[43]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[44]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[45]  Wee Kheng Leow,et al.  Normalization and Alignment of 3D Objects Based on Bilateral Symmetry Planes , 2007, MMM.

[46]  Yanxi Liu,et al.  Curved Reflection Symmetry Detection with Self-validation , 2010, ACCV.

[47]  Hagit Hel-Or,et al.  Symmetry as a Continuous Feature , 1995, IEEE Trans. Pattern Anal. Mach. Intell..