Design for Microassembly - A Methodology for Product Design and Process Selection

To deal with the high complexity of the products and processes in the microdomain a design for microassembly (DFμA) Methodology is introduced which aims to facilitate the efficient assembly of complex three-dimensional miniaturised devices. Currently neither the literature nor any of the common design for assembly (DFA) tools provide sufficient solutions for the microworld. The methodology's objective is to enable an increased transfer of products from the research laboratory into industrial practice.

[1]  Mahmoud M. Farag,et al.  Materials and process selection in engineering , 1979 .

[2]  Volker Saile,et al.  Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review , 2004, Microelectron. J..

[3]  Laura Slack,et al.  Product Design , 2022, Lean Management.

[4]  Michael Sylvester Packianather,et al.  Micro-injection moulding: Factors affecting the achievable aspect ratios , 2007 .

[5]  Toshi Takamori,et al.  Distributed Actuation Devices Using Soft Gel Actuators , 2000 .

[6]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[7]  Mark H. Yim,et al.  Two Approaches to Distributed Manipulation , 2000 .

[8]  Daniel E. Whitney Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development [Book Review] , 2005, IEEE Robotics & Automation Magazine.

[9]  B. L. Miles,et al.  Design for Manufacture and Assembly , 1998 .

[10]  Irene Fassi,et al.  Hybrid-manufacturing: The challenge of micro-technology , 2003 .

[11]  Hiroyuki Fujita,et al.  A Conveyance the Concept of System Using Air Flow Based on Distributed Micro Motion Systems , 1994 .

[12]  Peter C. Y. Chen,et al.  Force Sensing and Control in Micromanipulation , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[13]  A. E. Pannenborg Technology push versus market pullߞthe designer's dilemma , 1975 .

[14]  L. Lee The Chemistry and Physics of Solid Adhesion , 1991 .

[15]  Wolfgang Fritzsche,et al.  Nanotechnology: An Introduction to Nanostructuring Techniques , 2004 .

[16]  J. Gilgun,et al.  A Case for Case Studies in Social Work Research , 1994 .

[17]  Minoru Iwata,et al.  Extended Assemblability Evaluation Method (AEM) , 2002 .

[18]  Carsten Tietje,et al.  Pneumatic Contactless Microfeeder, Design Optimisation and Experimental Validation , 2008, IPAS.

[19]  Daniel Svensson Towards Product Structure Management in Heterogeneous Environments , 2003 .

[20]  J. Jacot,et al.  Economical justification of flexible microassembly cells , 2003, Proceedings of the IEEE International Symposium onAssembly and Task Planning, 2003..

[21]  Anders Warell Design Syntactics: A Functional Approach to Visual Product Form – Theory, Models, and Methods , 2001 .

[22]  Markus Brunner,et al.  Vacuum tool for handling microobjects with a NanoRobot , 1997, Proceedings of International Conference on Robotics and Automation.

[23]  H. Yeh,et al.  Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates , 1994, IEEE Photonics Technology Letters.

[24]  Ernst Obermeier,et al.  A micromachined single-chip inkjet printhead , 1996 .

[25]  Yotaro Hatamura The practice of machine design , 1999 .

[26]  Bradley J. Nelson,et al.  A flexible experimental workcell for efficient and reliable wafer-level 3D micro-assembly , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[27]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[28]  Torsten Scheller Untersuchungen zu automatisierten Montageprozessen hybrider mikrooptischer Systeme , 2003 .

[29]  Dominiek Reynaerts,et al.  Assembly of Microsystems , 2000 .

[30]  D. Pugh,et al.  How to Get a PhD: A Handbook for Students and Their Supervisors , 1994 .

[31]  John W. Suh,et al.  CMOS Integrated Organic Ciliary Actuator Arrays For General-Purpose Micromanipulation Tasks , 2000 .

[33]  Gunther Reinhart,et al.  Growth into Miniaturization — Flexible Microassembly Automation , 1997 .

[34]  Hong Mei Knowledge-based expert support in an assembly-oriented CAD environment , 2000 .

[35]  George A. Hazelrigg,et al.  A Framework for Decision-Based Engineering Design , 1998 .

[36]  John D. Richards Handbook of research design and social measurement , 1993 .

[37]  C. Gonzalez,et al.  MicroJoinery: concept, definition, and application to microsystem development , 1998 .

[38]  Yu Zhou,et al.  Integrating force and vision feedback for microassembly , 1998, Other Conferences.

[39]  Y. Fukuta,et al.  Architecture and implementation of distributed control system for MEMS-based intelligent motion surface , 2005, Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. ISIE 2005..

[40]  Hyungpil Moon,et al.  Distributed Manipulation of Flat Objects With Two Airflow Sinks , 2006, IEEE Transactions on Robotics.

[41]  Timo Salmi,et al.  First Steps in Integrating Micro-Assembly Features into Industrially used DFA Software , 2006, IPAS.

[42]  Bernhard Karpuschewski,et al.  A classification scheme for quantitative analysis of micro‐grip principles , 2004 .

[43]  Heather L. Klaubert Tiny design : a study of the design of microelectromechanical systems , 1998 .

[44]  Andreas Gentner Entwurf eines Kennzahlensystems zur Effektivitäts- und Effizienzsteigerung von Entwicklungsprojekten : dargestellt am Beispiel der Entwicklungs- und Anlaufphasen in der Automobilindustrie , 1994 .

[45]  Thomas R. Kurfess,et al.  International Assessment of Research and Development in Micromanufacturing , 2005 .

[46]  Albert Albers,et al.  Methodological investigation of the product development in micro technology , 2003 .

[47]  Farrokh Mistree,et al.  The Validation Square: How Does One Verify and Validate a Design Method? , 2006 .

[48]  Andrew T. Olewnik,et al.  On Validating Engineering Design Decision Support Tools , 2005, Concurr. Eng. Res. Appl..

[49]  David A. Bradley Integrated And Simultaneous Design For Robotic Assembly, by Hubert K. Rampersad, John Wiley, New York, 1995 (£24.95) , 1996, Robotica.

[50]  Günther Schuh Gestaltung und Bewertung von Produktvarianten : ein Beitrag zur systematischen Planung von Serienprodukten , 1989 .

[51]  Vannessa Goodship,et al.  Practical guide to injection moulding , 2004 .

[52]  Tilo Pfeifer,et al.  Quality control and process observation for the micro assembly process , 2001 .

[53]  C. Tietjea,et al.  Design for Microassembly – Capturing Process Characteristics , 2007 .

[54]  Sai Cheong Fok,et al.  Development of Expert System for Concurrent Product Design and Planning for Assembly , 1999 .

[55]  Pierre Lambert,et al.  Capillary Forces in Microassembly , 2007 .

[56]  Michael A. Wilson,et al.  Nanotechnology: Basic Science and Emerging Technologies , 2002 .

[57]  Ray C. Johnson,et al.  Mechanical Design Synthesis: Creative Design and Optimization , 1978 .

[58]  Jan Chal,et al.  Design for Assembly: Principles and Practice , 1994 .

[59]  Crispin Hales,et al.  Engineering design: a systematic approach , 1989 .

[60]  H. Fujita,et al.  Pneumatic two-dimensional conveyance system for autonomous distributed MEMS , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[61]  H. Fujita,et al.  System design for cooperative control of arrayed microactuators , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.