Existence of Compactly Supported Global Minimisers for the Interaction Energy

[1]  Ute Dreher,et al.  Statistical Mechanics Rigorous Results , 2016 .

[2]  Razvan C. Fetecau,et al.  On minimizers of interaction functionals with competing attractive and repulsive potentials , 2015 .

[3]  J. Carrillo,et al.  Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems , 2014, 1406.4040.

[4]  D. Slepčev,et al.  Existence of Minimizers of Nonlocal Interaction Energies , 2014 .

[5]  Guillaume Carlier,et al.  From Nash to Cournot–Nash equilibria via the Monge–Kantorovich problem , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  J. Carrillo,et al.  A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure , 2014, 1402.4252.

[7]  J. A. Carrillo,et al.  Nonlinear stability of flock solutions in second-order swarming models , 2014 .

[8]  S. Martin,et al.  Explicit flock solutions for Quasi-Morse potentials , 2013, European Journal of Applied Mathematics.

[9]  Jian‐Guo Liu,et al.  Evolution of the Distribution of Wealth in an Economic Environment Driven by Local Nash Equilibria , 2013, 1307.1685.

[10]  Djalil CHAFAÏ,et al.  First order global asymptotics for confined particles with singular pair repulsion , 2013, 1304.7569.

[11]  Giacomo Albi,et al.  Stability Analysis of Flock and Mill Rings for Second Order Models in Swarming , 2013, SIAM J. Appl. Math..

[12]  R. Fetecau,et al.  Emergent behaviour in multi-particle systems with non-local interactions , 2013 .

[13]  J. Carrillo,et al.  Dimensionality of Local Minimizers of the Interaction Energy , 2012, 1210.6795.

[14]  J. A. Carrillo,et al.  A new interaction potential for swarming models , 2012, 1204.2567.

[15]  R. Fetecau,et al.  Equilibria of biological aggregations with nonlocal repulsive-attractive interactions , 2011, 1109.2864.

[16]  J. A. Carrillo,et al.  Confinement for repulsive-attractive kernels , 2012, 1210.0602.

[17]  David Uminsky,et al.  On Soccer Balls and Linearized Inverse Statistical Mechanics , 2012, J. Nonlinear Sci..

[18]  Gaël Raoul,et al.  Nonlocal interaction equations: Stationary states and stability analysis , 2012, Differential and Integral Equations.

[19]  T. Kolokolnikov,et al.  PREDICTING PATTERN FORMATION IN PARTICLE INTERACTIONS , 2012 .

[20]  Andrea L. Bertozzi,et al.  AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .

[21]  W. Marsden I and J , 2012 .

[22]  J. A. Carrillo,et al.  A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity , 2011, 1110.6513.

[23]  Razvan C. Fetecau,et al.  Swarm dynamics and equilibria for a nonlocal aggregation model , 2011 .

[24]  J. A. Carrillo,et al.  Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability , 2011, 1109.5258.

[25]  G. Friesecke,et al.  Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape , 2009, 0909.0927.

[26]  U. Rieder,et al.  Markov Decision Processes with Applications to Finance , 2011 .

[27]  Klemens Fellner,et al.  Stability of stationary states of non-local equations with singular interaction potentials , 2011, Math. Comput. Model..

[28]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[29]  Andrew J. Bernoff,et al.  A Primer of Swarm Equilibria , 2010, SIAM J. Appl. Dyn. Syst..

[30]  J. Vázquez,et al.  Nonlinear Porous Medium Flow with Fractional Potential Pressure , 2010, 1001.0410.

[31]  G. Raoul,et al.  STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS , 2010 .

[32]  J. Verdera,et al.  A new characterization of Sobolev spaces on $${\mathbb{R}^{n}}$$ , 2010, 1011.0667.

[33]  D. Wales Energy landscapes of clusters bound by short-ranged potentials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  Luis Caffarelli,et al.  Asymptotic behaviour of a porous medium equation with fractional diffusion , 2010, 1004.1096.

[35]  On the Crystallization of 2D Hexagonal Lattices , 2009 .

[36]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[37]  A. L'opez Garc'ia,et al.  Greedy energy points with external fields , 2009, 0901.4160.

[38]  Luis Silvestre,et al.  Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian , 2007, math/0702392.

[39]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[40]  F. Theil A Proof of Crystallization in Two Dimensions , 2006 .

[41]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[42]  D. Chandler,et al.  Dynamic pathways for viral capsid assembly. , 2005, Biophysical journal.

[43]  Salvatore Torquato,et al.  Optimized interactions for targeted self-assembly: application to a honeycomb lattice. , 2005, Physical review letters.

[44]  G. Toscani,et al.  Long-Time Asymptotics of Kinetic Models of Granular Flows , 2004 .

[45]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[46]  Emanuele Caglioti,et al.  A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media , 1998 .

[47]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.

[48]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[49]  François Bavaud,et al.  Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation , 1991 .

[50]  Irene Fonseca,et al.  A uniqueness proof for the Wulff Theorem , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[51]  Michael E. Fisher,et al.  THE STABILITY OF MANY-PARTICLE SYSTEMS , 1966 .

[52]  Otto Frostman Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .