Neural activity and the dynamics of central nervous system development

Recent imaging studies show that the formation of neural connections in the central nervous system is a highly dynamic process. The iterative formation and elimination of synapses and neuronal branches result in the formation of a much larger number of trial connections than is maintained in the mature brain. Neural activity modulates development through biasing this process of formation and elimination, promoting the formation and stabilization of appropriate synaptic connections on the basis of functional activity patterns.

[1]  P. Huttenlocher Synaptic density in human frontal cortex - developmental changes and effects of aging. , 1979, Brain research.

[2]  J. Lichtman,et al.  Synapse Elimination and Indelible Memory , 2000, Neuron.

[3]  D. Clapham,et al.  Transmitter-evoked local calcium release stabilizes developing dendrites , 2022 .

[4]  H. Okado,et al.  Continual remodeling of postsynaptic density and its regulation by synaptic activity , 1999, Nature Neuroscience.

[5]  Stephen J. Smith,et al.  The Dynamics of Dendritic Structure in Developing Hippocampal Slices , 1996, The Journal of Neuroscience.

[6]  Susanne E. Ahmari,et al.  Assembly of presynaptic active zones from cytoplasmic transport packets , 2000, Nature Neuroscience.

[7]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[8]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[9]  Stephen J. Smith,et al.  Knowing a Nascent Synapse When You See It , 2002, Neuron.

[10]  M P Stryker,et al.  Rapid remodeling of axonal arbors in the visual cortex. , 1993, Science.

[11]  Rafael Yuste,et al.  Bidirectional Regulation of Hippocampal Mossy Fiber Filopodial Motility by Kainate Receptors A Two-Step Model of Synaptogenesis , 2003, Neuron.

[12]  Rafael Yuste,et al.  Spine Motility Phenomenology, Mechanisms, and Function , 2002, Neuron.

[13]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[14]  Hollis T. Cline,et al.  NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. , 1999 .

[15]  J. E. Vaughn,et al.  Dendritic development and preferential growth into synaptogenic fields: A quantitative study of Golgi‐impregnated spinal motor neurons , 1988, Synapse.

[16]  Alex L Kolodkin,et al.  Curbing the Excesses of Youth Molecular Insights into Axonal Pruning , 2003, Neuron.

[17]  W. Tyler,et al.  BDNF Enhances Quantal Neurotransmitter Release and Increases the Number of Docked Vesicles at the Active Zones of Hippocampal Excitatory Synapses , 2001, The Journal of Neuroscience.

[18]  O. Steward,et al.  Protein synthesis at synaptic sites on dendrites. , 2001, Annual review of neuroscience.

[19]  P. Camilli,et al.  Glutamate regulates actin-based motility in axonal filopodia , 2001, Nature Neuroscience.

[20]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[21]  C. Shatz,et al.  Synapses formed by identified retinogeniculate axons during the segregation of eye input , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  G. Marrs,et al.  Rapid formation and remodeling of postsynaptic densities in developing dendrites , 2001, Nature Neuroscience.

[23]  Jeff W. Lichtman,et al.  Long-term synapse loss induced by focal blockade of postsynaptlc receptors , 1994, Nature.

[24]  Y. Goda,et al.  Mechanisms of Synapse Assembly and Disassembly , 2003, Neuron.

[25]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[26]  John T. Schmidt,et al.  Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. , 2004, Journal of neurobiology.

[27]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[28]  R. Mains,et al.  Inducible Genetic Suppression of Neuronal Excitability , 1999, The Journal of Neuroscience.

[29]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[30]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[31]  D. Bredt,et al.  Synaptic signaling by nitric oxide , 1997, Current Opinion in Neurobiology.

[32]  J. Garthwaite,et al.  Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain , 1988, Nature.

[33]  L. C. Katz,et al.  Destabilization of Cortical Dendrites and Spines by BDNF , 1999, Neuron.

[34]  Mu-ming Poo,et al.  Neurotrophins as synaptic modulators , 2001, Nature Reviews Neuroscience.

[35]  R J Kaethner,et al.  Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  C. Shatz,et al.  Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  J. Born,et al.  Acute versus chronic NMDA receptor blockade and synaptic AMPA receptor delivery , 2002, Nature Neuroscience.

[38]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[39]  Frank Bremmer,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR 2 , 2022 .

[40]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[41]  J. E. Vaughn,et al.  Fine structure of synaptogenesis in the vertebrate central nervous system. , 1989, Synapse.

[42]  JoAnn Buchanan,et al.  Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo , 2000, Nature Neuroscience.

[43]  Hollis T. Cline,et al.  Glutamate Receptor Activity Is Required for Normal Development of Tectal Cell Dendrites In Vivo , 1998, The Journal of Neuroscience.

[44]  R. Wong,et al.  Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis , 2001, Nature Neuroscience.

[45]  James E. Vaughn,et al.  Review: Fine structure of synaptogenesis in the vertebrate central nervous system , 1989 .

[46]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[47]  B. Gähwiler,et al.  NMDA receptor activation limits the number of synaptic connections during hippocampal development , 2001, Nature Neuroscience.

[48]  Berta Alsina,et al.  Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF , 2001, Nature Neuroscience.

[49]  C. Stuermer,et al.  Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish. , 1997, Journal of neurobiology.

[50]  Vincenzo De Paola,et al.  AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks , 2003, Nature Neuroscience.

[51]  R. Reed,et al.  X Inactivation of the OCNC1 Channel Gene Reveals a Role for Activity-Dependent Competition in the Olfactory System , 2001, Cell.

[52]  Guosong Liu,et al.  Regulation of Dendritic Spine Morphology and Synaptic Function by Shank and Homer , 2001, Neuron.

[53]  Florian Engert,et al.  Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons , 2002, Nature.

[54]  P. Goldman-Rakic,et al.  Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. , 1986, Science.

[55]  R. Wenthold,et al.  Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons , 2001, The European journal of neuroscience.

[56]  T. Wiesel Postnatal development of the visual cortex and the influence of environment , 1982, Nature.

[57]  M. Kennedy,et al.  Tetanic Stimulation Leads to Increased Accumulation of Ca2+/Calmodulin-Dependent Protein Kinase II via Dendritic Protein Synthesis in Hippocampal Neurons , 1999, The Journal of Neuroscience.

[58]  H. Cline,et al.  Stabilization of dendritic arbor structure in vivo by CaMKII. , 1998, Science.

[59]  Zhenbiao Yang,et al.  RHO Gtpases and the Actin Cytoskeleton , 2000 .

[60]  D. Hubel,et al.  RECEPTIVE FIELDS OF CELLS IN STRIATE CORTEX OF VERY YOUNG, VISUALLY INEXPERIENCED KITTENS. , 1963, Journal of neurophysiology.

[61]  F. Crépel,et al.  Maturation of climbing fiber responses in the rat. , 1971, Brain research.

[62]  Li I. Zhang,et al.  Electrical activity and development of neural circuits , 2001, Nature Neuroscience.

[63]  Stephen J. Smith,et al.  Filopodia, Spines, and the Generation of Synaptic Diversity , 2000, Neuron.

[64]  H. Cline,et al.  Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. , 1998, Science.

[65]  Masanobu Kano,et al.  Functional Differentiation of Multiple Climbing Fiber Inputs during Synapse Elimination in the Developing Cerebellum , 2003, Neuron.

[66]  L. C. Katz,et al.  BDNF release from single cells elicits local dendritic growth in nearby neurons , 2002, Nature Neuroscience.

[67]  B. Chapman Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. , 2000, Science.

[68]  Michael J. Sailor,et al.  Remodeling of Synaptic Actin Induced by Photoconductive Stimulation , 2001, Cell.

[69]  R. Reid,et al.  Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development , 2000, Nature Neuroscience.

[70]  Noam E Ziv,et al.  Principles of glutamatergic synapse formation: seeing the forest for the trees , 2001, Current Opinion in Neurobiology.

[71]  Scott E. Fraser,et al.  Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo , 1995, Nature.

[72]  M. Constantine‐Paton,et al.  Exogenous nitric oxide causes collapse of retinal ganglion cell axonal growth cones in vitro. , 1996, Journal of neurobiology.

[73]  E. S. Ruthazer,et al.  Control of Axon Branch Dynamics by Correlated Activity in Vivo , 2003, Science.

[74]  L. C. Katz,et al.  Early development of ocular dominance columns. , 2000, Science.

[75]  H. Loos,et al.  Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development , 1982, Neuroscience Letters.

[76]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[77]  J. Fiala,et al.  Synaptogenesis Via Dendritic Filopodia in Developing Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[78]  Yasuhiko Ohta,et al.  Hippocampal LTP Is Accompanied by Enhanced F-Actin Content within the Dendritic Spine that Is Essential for Late LTP Maintenance In Vivo , 2003, Neuron.

[79]  R. Wong,et al.  Activity-dependent regulation of dendritic growth and patterning , 2002, Nature Reviews Neuroscience.

[80]  H. Cline,et al.  Regulation of Rho GTPases by Crosstalk and Neuronal Activity In Vivo , 2002, Neuron.

[81]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[82]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[83]  R. M. Gaze,et al.  The evolution of the retinotectal map during development in Xenopus , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[84]  Carlo Sala,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 , 2003, Nature.

[85]  Hollis T. Cline,et al.  Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo , 2000, Nature Neuroscience.

[86]  T. Parks,et al.  Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  V. Murthy,et al.  Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons , 2002, Nature.

[88]  G. Gallo,et al.  The trkA Receptor Mediates Growth Cone Turning toward a Localized Source of Nerve Growth Factor , 1997, The Journal of Neuroscience.

[89]  L C Katz,et al.  Neurotrophins and synaptic plasticity. , 1999, Annual review of neuroscience.

[90]  H. Cline,et al.  Dendritic arbor development and synaptogenesis , 2001, Current Opinion in Neurobiology.