Robust Moving Object Detection and Shadow Removing Based on Improved Gaussian Model and Gradient Information

A self-adaptive moving object detection and shadow removing algorithm for video surveillance is presented in this paper. The proposed algorithm improves the classic Gaussian Mixture Model to remove some unfavorable influences, such as sudden illumination changes and gradual variations of the illumination, ghost. In order to achieve the target, the learning rate is updated according to the illumination changes factor while the mean and variance of all distributions which match the new point are updated, and not only the highest weight of distribution. Moreover, a new effective algorithm for shadow removing in all kinds of complex scene is proposed, which combines HSV color information with RGB normalized space and first-order gradient information. Finally, the corresponding experimental results show that all the detection rates are over 90% , and the improved algorithm performs more robustly and powerfully than the classical Gaussian Mixture Model in moving objects detecting. The proposed algorithm can also effectively suppress shadow.

[1]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  Nazanin Rahnavard,et al.  Unequal Error Protection Using Partially Regular LDPC Codes , 2007, IEEE Transactions on Communications.

[3]  Kenta Kasai,et al.  Detailedly Represented Irregular Low-Density Parity-Check Codes , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[4]  Olgica Milenkovic,et al.  On unequal error protection LDPC codes based on Plotkin-type constructions , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[5]  David Declercq,et al.  Enhancement of Unequal Error Protection Properties of LDPC Codes , 2007, EURASIP J. Wirel. Commun. Netw..

[6]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[7]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[8]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[9]  Tiziana D'Orazio,et al.  Moving object segmentation by background subtraction and temporal analysis , 2006, Image Vis. Comput..

[10]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[11]  Helmut E. Bez,et al.  A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking , 2005, Pattern Recognit. Lett..

[12]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[13]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[14]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[15]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[16]  David Declercq,et al.  Check-Irregular LDPC Codes for Unequal Error Protection under Iterative Decoding , 2006 .

[17]  Larry S. Davis,et al.  What can projections of flow fields tell us about the visual motion , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[18]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[19]  Changzhi Lv,et al.  An updating method of self-adaptive background for moving objects detection in video , 2008, International Conferences on Audio, Language and Image Processing.

[20]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[21]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Marco Chiani,et al.  Protograph LDPC Codes Design Based on EXIT Analysis , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[23]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[24]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[25]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Dejan Vukobratovic,et al.  Generalized ACE Constrained Progressive Edge-Growth LDPC Code Design , 2008, IEEE Communications Letters.

[27]  Larry S. Davis,et al.  Detection of Independent Motion Using Directional Motion Estimation , 1999, Comput. Vis. Image Underst..

[28]  L. Wixson Detecting Salient Motion by Accumulating Directionally-Consistent Flow , 2000, IEEE Trans. Pattern Anal. Mach. Intell..