Selection of the Mars Science Laboratory Landing Site

The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20 km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1) latitude (±30°) for thermal management of the rover and instruments, (2) elevation (<−1 km) for sufficient atmosphere to slow the spacecraft, (3) relief of <100–130 m at baselines of 1–1000 m for control authority and sufficient fuel during powered descent, (4) slopes of <30° at baselines of 2–5 m for rover stability at touchdown, (5) moderate rock abundance to avoid impacting the belly pan during touchdown, and (6) a radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.

[1]  T. Hagfors,et al.  Backscattering from an undulating surface with applications to radar returns from the Moon , 1964 .

[2]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[3]  P. Gierasch Martian dust storms , 1974 .

[4]  H. Masursky,et al.  The Viking Landing Sites: Selection and Certification , 1976, Science.

[5]  H. Masursky,et al.  Search for the Viking 2 Landing Site , 1976, Science.

[6]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[7]  B. Jakosky The effects of nonideal surfaces on the derived thermal properties of Mars , 1979 .

[8]  E. Miner,et al.  Time variability of Martian bolometric albedo , 1981 .

[9]  H. Masursky,et al.  Viking site selection and certification , 1981 .

[10]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[11]  P. Christensen,et al.  Martian dust mantling and surface composition: Interpretation of thermophysical properties , 1982 .

[12]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[13]  B. Jakosky,et al.  Global duricrust on Mars: Analysis of remote‐sensing data , 1986 .

[14]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[15]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[16]  M. Malin,et al.  High-Resolution Thermal Imaging of Mars , 1987 .

[17]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[18]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[19]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[20]  D. Muhleman,et al.  Radar determination of Mars surface properties , 1992 .

[21]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[22]  B. Butler 3.5-cm radar investigation of Mars and Mercury : planetological implications , 1994 .

[23]  Badrinath Roysam,et al.  Light Microscopic Images Reconstructed by Maximum Likelihood Deconvolution , 1995 .

[24]  D S Biggs,et al.  Acceleration of iterative image restoration algorithms. , 1997, Applied optics.

[25]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[26]  Mars Pathfinder landing site assessment with Goldstone delay‐Doppler and CW radar experiments , 1997 .

[27]  H. J. Moore,et al.  Selection of the Mars Pathfinder landing site , 1997 .

[28]  M. Golombek,et al.  Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .

[29]  Scott Miller,et al.  Adaptive automatic terrain extraction , 1997, Defense, Security, and Sensing.

[30]  David E. Smith,et al.  The relationship between MOLA northern hemisphere topography and the 6.1‐Mbar atmospheric pressure surface of Mars , 1998 .

[31]  Bruce A. Campbell,et al.  Mars mapping with delay-Doppler radar , 1999 .

[32]  Nathalie A. Cabrol,et al.  Hydrogeologic Evolution of Gale Crater and Its Relevance to the Exobiological Exploration of Mars , 1999 .

[33]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[34]  H. J. Moore,et al.  Assessment of Mars Pathfinder landing site predictions , 1999 .

[35]  J. Garvin,et al.  Vertical roughness of Mars from the Mars Orbiter Laser Altimeter , 1999 .

[36]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[37]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[38]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[39]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[40]  Scot C. R. Rafkin,et al.  The Mars Regional Atmospheric Modeling System: Model Description and Selected Simulations , 2001 .

[41]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[42]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[43]  Rock Stratigraphy in Gale Crater, Mars , 2001 .

[44]  Bruce A. Cantor,et al.  Martian dust storms: 1999 Mars Orbiter Camera observations , 2001 .

[45]  R. Arvidson,et al.  Geologic setting and origin of Terra Meridiani hematite deposit on Mars , 2002 .

[46]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[47]  B. Jakosky,et al.  Surficial Geologic Surveys of Gale Crater and Melas Chasma, Mars: Integration of Remote-Sensing Data , 2002 .

[48]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[49]  Jeffrey R. Barnes,et al.  Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model , 2002 .

[50]  J. Grant,et al.  Drainage evolution in the Margaritifer Sinus region, Mars , 2002 .

[51]  Randolph L. Kirk,et al.  Meter‐scale slopes of candidate MER landing sites from point photoclinometry , 2003 .

[52]  A. F. C. Haldemann,et al.  Analysis of MOLA data for the Mars Exploration Rover landing sites , 2003 .

[53]  Clark F. Olson,et al.  Optical landmark detection for spacecraft navigation , 2003 .

[54]  M. Zuber,et al.  Mars Orbiter Laser Altimeter pulse width measurements and footprint‐scale roughness , 2003 .

[55]  Kenneth S Edgett,et al.  Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars , 2003, Science.

[56]  A. F. C. Haldemann,et al.  Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations : Mars exploration rover mission and landing sites , 2003 .

[57]  William E. Dietrich,et al.  Martian Layered Fluvial Deposits: Implications for Noachian Climate Scenarios , 2003 .

[58]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .

[59]  R. Kirk,et al.  High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images , 2003 .

[60]  J. Anderson,et al.  Modernization of the Integrated Software for Imagers and Spectrometers , 2004 .

[61]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[62]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[63]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[64]  Thomas H. Prettyman,et al.  The presence and stability of ground ice in the southern hemisphere of Mars , 2004 .

[65]  L. Marinangeli,et al.  Complex evolution of paleolacustrine systems on Mars: An example from the Holden crater , 2004 .

[66]  Joshua L. Bandfield,et al.  Atmospheric correction and surface spectral unit mapping using Thermal Emission Imaging System data , 2004 .

[67]  Maria T. Zuber,et al.  A minimum time for the formation of Holden Northeast fan, Mars , 2004 .

[68]  B. Jakosky,et al.  Surficial properties in Gale Crater, Mars, from Mars Odyssey THEMIS data , 2004 .

[69]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[70]  M. Bourke,et al.  Dynamic river channels suggest a long‐lived Noachian crater lake on Mars , 2005 .

[71]  K. Edgett The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters , 2005 .

[72]  P. Allemand,et al.  Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars , 2005 .

[73]  Larry H. Matthies,et al.  Visual odometry on the Mars Exploration Rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[74]  Jeffrey J. Biesiadecki,et al.  Attitude and position estimation on the Mars exploration rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[75]  John R. Wright,et al.  Mars Exploration Rover surface operations: driving spirit at Gusev Crater , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[76]  Jeffrey J. Biesiadecki,et al.  Tradeoffs Between Directed and Autonomous Driving on the Mars Exploration Rovers , 2007, ISRR.

[77]  James W. Head,et al.  Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region , 2005 .

[78]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[79]  John R. Wright,et al.  Physical-based simulation for Mars Exploration Rover tactical sequencing , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[80]  J. Moore,et al.  Large alluvial fans on Mars , 2005 .

[81]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[82]  Gajanana C. Birur,et al.  Mars Science Laboratory Thermal Control Architecture , 2005 .

[83]  Analysis of Layered Deposits in Terby Crater (Hellas Region, Mars) Using Multiple Datasets MOC, THEMIS and OMEGA/MEX Data , 2005 .

[84]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[85]  A. F. C. Haldemann,et al.  Assessment of Mars Exploration Rover landing site predictions , 2005, Nature.

[86]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[87]  Preliminary Constraints and Plans for Mars Science Laboratory Landing Site Selection , 2006 .

[88]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[89]  Rebecca Castano,et al.  Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .

[90]  MSL Landing Site Selection User ’ s Guide to Engineering Constraints , 2006 .

[91]  J. G. Ward,et al.  Nature and Origin of the Hematite-Bearing Plains of Terra Meridiani Based on Analyses of Orbital and Mars Exploration Rover Data Sets , 2006 .

[92]  R. Mitcheltree,et al.  Mars Science Laboratory entry, descent, and landing system , 2006, 2006 IEEE Aerospace Conference.

[93]  Edward Tunstel,et al.  Mars exploration rover surface operations: driving opportunity at Meridiani Planum , 2005, IEEE Robotics & Automation Magazine.

[94]  Oded Aharonson,et al.  Stratigraphic analysis of the distributary fan in Eberswalde crater using stereo imagery , 2006 .

[95]  Robin L. Fergason,et al.  Physical properties of the Mars Exploration Rover landing sites as inferred from Mini‐TES–derived thermal inertia , 2006 .

[96]  Larry H. Matthies,et al.  Visual odometry on the Mars exploration rovers - a tool to ensure accurate driving and science imaging , 2006, IEEE Robotics & Automation Magazine.

[97]  Bingcai Zhang,et al.  AUTOMATIC TERRAIN EXTRACTION USING MULTIPLE IMAGE PAIR AND BACK MATCHING , 2006 .

[98]  A. Vasavada,et al.  Transient liquid water near an artificial heat source on Mars , 2006 .

[99]  P. Christensen,et al.  High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications , 2006 .

[100]  Mary A. Voytek,et al.  Findings of the Mars special regions science analysis group. , 2006, Astrobiology.

[101]  J.J. Biesiadecki,et al.  The Mars Exploration Rover surface mobility flight software driving ambition , 2006, 2006 IEEE Aerospace Conference.

[102]  M. Maimone,et al.  Chapter 3 SURFACE NAVIGATION AND MOBILITY INTELLIGENCE ON THE MARS EXPLORATION ROVERS , 2006 .

[103]  Andrew E. Johnson,et al.  Computer Vision on Mars , 2007, International Journal of Computer Vision.

[104]  A. Stentz,et al.  Global Path Planning on Board the Mars Exploration Rovers , 2007, 2007 IEEE Aerospace Conference.

[105]  Preliminary Constraints, Plans and Proposed Landing Sites for the Mars Science Laboratory Mission , 2007 .

[106]  A.M.S. Martin,et al.  Mars Science Laboratory: Entry, Descent, and Landing System Performance , 2007, 2007 IEEE Aerospace Conference.

[107]  S. Nowicki,et al.  Rock abundance on Mars from the Thermal Emission Spectrometer , 2007 .

[108]  Laurence R. Harris,et al.  Computational Vision in Neural and Machine Systems , 2007 .

[109]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[110]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[111]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[112]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[113]  F. Scholten,et al.  GLOBAL MAPPING OF MARS BY SYSTEMATIC DERIVATION OF MARS EXPRESS HRSC HIGH-RESOLUTION DIGITAL ELEVATION MODELS AND ORTHOIMAGES , 2007 .

[114]  C. Quantin,et al.  Stratigraphic architectures spotted in southern Melas Chasma, Valles Marineris, Mars , 2007 .

[115]  Jean-Pierre Bibring,et al.  Phyllosilicates in the Mawrth Vallis region of Mars , 2007 .

[116]  Ashwin R. Vasavada,et al.  Landing Sites Proposed for the Mars Science Laboratory Mission , 2007 .

[117]  J. Grant,et al.  Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars , 2007 .

[118]  D. Kipp,et al.  Mars Science Laboratory Entry, Descent, and Landing Triggers , 2007, 2007 IEEE Aerospace Conference.

[119]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[120]  M. Maimone,et al.  Overview of the Mars Exploration Rovers ’ Autonomous Mobility and Vision Capabilities , 2007 .

[121]  J. Michalski,et al.  Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars , 2007 .

[122]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[123]  Jeffrey J. Biesiadecki,et al.  Mars Exploration Rover Mobility and IDD Downlink Analysis Tools , 2008 .

[124]  R. Phillips,et al.  The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits' origin , 2008 .

[125]  M. M. Osterloo,et al.  Chloride-Bearing Materials in the Southern Highlands of Mars , 2008, Science.

[126]  R. Morris,et al.  Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEx and implications for their formation , 2008 .

[127]  An application of sequence stratigraphy to Mars: the Eberswalde fan delta , 2008 .

[128]  Randolph L. Kirk,et al.  Compositional stratigraphy of clay‐bearing layered deposits at Mawrth Vallis, Mars , 2008 .

[129]  Downselection of Landing Sites for the Mars Science Laboratory , 2008 .

[130]  Laboratory Testing of the Ice-Salt Intrusions and Extrusions in Craters for Determining Mars Landing Site , 2008 .

[131]  A. McEwen,et al.  HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars , 2008 .

[132]  A. Chen,et al.  Mars Science Laboratory Entry, Descent, and Landing System Overview , 2008, 2008 IEEE Aerospace Conference.

[133]  M. Mellon,et al.  The Martian Surface: Martian surface properties from joint analysis of orbital, Earth-based, and surface observations , 2008 .

[134]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[135]  M. Broxton,et al.  The Ames Stereo Pipeline: Automated 3D Surface Reconstruction from Orbital Imagery , 2008 .

[136]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[137]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[138]  Ayanna M. Howard,et al.  Intelligence For Space Robotics , 2008 .

[139]  Paul S. Smith,et al.  Mars Exploration Program 2007 Phoenix landing site selection and characteristics , 2008 .

[140]  Raymond E. Arvidson,et al.  Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces , 2008 .

[141]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[142]  Jean-Pierre Bibring,et al.  Abundance of minerals in the phyllosilicate-rich units on Mars , 2008 .

[143]  M. Mellon,et al.  The Martian Surface: The thermal inertia of the surface of Mars , 2008 .

[144]  Jean-Pierre Bibring,et al.  Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars , 2008, Science.

[145]  Brian D. Pollard,et al.  A Radar Terminal Descent Sensor for the Mars Science Laboratory mission , 2009, 2009 IEEE Aerospace conference.

[146]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[147]  V. Ansan,et al.  Estimate of aeolian dust thickness in Arabia Terra, Mars: implications of a thick mantle (> 20 m) for hydrogen detection , 2009 .

[148]  Ashwin R. Vasavada,et al.  Selection of Four Landing Sites for the Mars Science Laboratory , 2009 .

[149]  F. Scholten,et al.  Derivation and V alidation of High-Resolution Digital T errain Models fr om Mars Express HRSC Data , 2009 .

[150]  John P. Grotzinger,et al.  Beyond water on Mars , 2009 .

[151]  Relationships Between Remote Sensing Data and Surface Properties of Mars Landing Sites , 2009 .

[152]  James F. Bell,et al.  Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site , 2009 .

[153]  G. Swayze,et al.  Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate , 2009 .

[154]  S. Murchie,et al.  Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin , 2009 .

[155]  J. Muller,et al.  Multi-resolution topographic data extraction from Martian stereo imagery , 2009 .

[156]  A. McEwen,et al.  Sublacustrine depositional fans in southwest Melas Chasma , 2009 .

[157]  G. Swayze,et al.  Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region , 2009 .

[158]  M. Mellon,et al.  Geomorphic and geologic settings of the Phoenix Lander mission landing site , 2009 .

[159]  J. Schofield,et al.  Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity , 2009 .

[160]  R. Kirk,et al.  HiJACK: Correcting spacecraft jitter in HiRISE images of Mars , 2009 .

[161]  J. Grant,et al.  Aqueous depositional settings in Holden crater, Mars , 2010 .

[162]  Keith S. Novak,et al.  Mars Science Laboratory: Rover Actuator Thermal Design , 2010 .

[163]  G. Neukum,et al.  Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM , 2010 .

[164]  Near‐tropical subsurface ice on Mars , 2010, 1103.0379.

[165]  David Hinson,et al.  Atmospheric risk assessment for the Mars Science Laboratory Entry, Descent, and Landing system , 2010, 2010 IEEE Aerospace Conference.

[166]  Nicolas Thomas,et al.  The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP) , 2010 .

[167]  R. Milliken,et al.  Sources and sinks of clay minerals on Mars , 2010 .

[168]  M. Bourke,et al.  Aeolian processes and dune morphology in Gale Crater , 2010 .

[169]  Landing Sites Under Consideration for Mars Science Laboratory , 2010 .

[170]  Christian Heipke,et al.  Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance , 2010 .

[171]  Martin A. Slade,et al.  Terrestrial Quadstatic Interferometric Radar Observations of Mars , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[172]  J. Grotzinger,et al.  Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater , 2010 .

[173]  N. Cabrol,et al.  Lakes on Mars , 2010 .

[174]  A. McEwen,et al.  Mineralogy and stratigraphy of phyllosilicate‐bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin , 2010 .

[175]  F. Poulet,et al.  Analysis of phyllosilicate deposits in the Nili Fossae region of Mars: Comparison of TES and OMEGA data , 2010 .

[176]  Regional HRSC Multi-Orbit Digital Terrain Models for the Mars Science Laboratory Candidate Landing Sites , 2010 .

[177]  L. Crumpler,et al.  Inverted channel deposits on the floor of Miyamoto crater, Mars , 2010 .

[178]  New Landing Site Proposal for Mars Science Laboratory (MSL) in Xanthe Terra , 2010 .

[179]  V. Hamilton,et al.  Geologic context of proposed chloride‐bearing materials on Mars , 2010 .

[180]  F. G. Carrozzo,et al.  The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission. , 2010, Astrobiology.

[181]  A. Huertas,et al.  Rocks and Rock Size-Frequency Distributions at the Mars Science Laboratory Landing Sites , 2011 .

[182]  J. Grant,et al.  Late alluvial fan formation in southern Margaritifer Terra, Mars , 2011 .

[183]  Ashwin R. Vasavada,et al.  The science process for selecting the landing site for the 2011 Mars Science Laboratory , 2011 .

[184]  Wall-to-Wall 1-m Topographic Coverage of the Mars Science Laboratory Candidate Landing Sites , 2011 .

[185]  S. Murchie,et al.  Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars , 2011 .

[186]  Final Four Landing Sites for the Mars Science Laboratory , 2011 .

[187]  Dawn Y Sumner,et al.  Preservation of martian organic and environmental records: final report of the Mars biosignature working group. , 2011, Astrobiology.

[188]  Gavin F. Mendeck,et al.  Entry Guidance for the 2011 Mars Science Laboratory Mission , 2011 .

[189]  J. Grant,et al.  A lake in Uzboi Vallis and implications for Late Noachian-Early Hesperian climate on Mars , 2011 .

[190]  Simon J. Hook,et al.  Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data , 2011 .

[191]  J. Bell,et al.  Influence of fault‐controlled topography on fluvio‐deltaic sedimentary systems in Eberswalde crater, Mars , 2011 .

[192]  Gregg Alan Swayze,et al.  Aqueous mineralogy and stratigraphy at and around the proposed Mawrth Vallis MSL Landing Site: New insights into the aqueous history of the region , 2011 .

[193]  R. Kirk,et al.  Meter-Scale Slopes of Candidate MSL Landing Sites from Point Photoclinometry , 2012 .

[194]  R. Beyer Meter-Scale Slopes of Candidate InSight Landing Sites from Point Photoclinometry , 2012 .

[195]  D. Kipp Terrain safety assessment in support of the Mars Science Laboratory mission , 2012, 2012 IEEE Aerospace Conference.

[196]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[197]  Andrea Cammarano,et al.  Dynamics of non-linear structures: modal interaction and non-linear identification , 2012 .

[198]  Bernard H. Foing,et al.  Lunar and Planetary Science Conference , 2013 .

[199]  J. Grant,et al.  Geologic map of MTM -15027, -20027, -25027, and -25032 quadrangles, Margaritifer Terra region of Mars , 2013 .

[200]  James F. Bell,et al.  The Martian Surface: Composition, Mineralogy, and Physical Properties , 2014 .