Expression of Two Novel β-Glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and Characterization of the Heterologous Protein Products

[1]  Duochuan Li,et al.  Expression, purification and crystallization of a family 55 β-1,3-glucanase from Chaetomium thermophilum. , 2015, Acta crystallographica. Section F, Structural biology communications.

[2]  In Jung Kim,et al.  Optimization of synergism of a recombinant auxiliary activity 9 from Chaetomium globosum with cellulase in cellulose hydrolysis , 2015, Applied Microbiology and Biotechnology.

[3]  M. Grabherr,et al.  Draft Genome Sequence of the Cellulolytic Fungus Chaetomium globosum , 2015, Genome Announcements.

[4]  J. A. Jorge,et al.  Structural basis for glucose tolerance in GH1 β-glucosidases. , 2014, Acta crystallographica. Section D, Biological crystallography.

[5]  E. Bayer,et al.  Thermophilic lignocellulose deconstruction. , 2014, FEMS microbiology reviews.

[6]  H. Nevalainen,et al.  Making recombinant proteins in filamentous fungi- are we expecting too much? , 2014, Front. Microbiol..

[7]  U. Moilanen,et al.  Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. , 2013, Bioresource technology.

[8]  P. Väljamäe,et al.  Selecting β-glucosidases to support cellulases in cellulose saccharification , 2013, Biotechnology for Biofuels.

[9]  F. Antunes,et al.  Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation , 2012, Journal of biomedicine & biotechnology.

[10]  Mikko Arvas,et al.  Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates , 2012, Microbial Cell Factories.

[11]  K. Kitamoto,et al.  Heterologous Expression in Pichia pastoris and Characterization of an Endogenous Thermostable and High-Glucose-Tolerant β-Glucosidase from the Termite Nasutitermes takasagoensis , 2012, Applied and Environmental Microbiology.

[12]  Jamie H. D. Cate,et al.  Induction of lignocellulose degrading enzymes in Neurospora crassa by cellodextrins - eScholarship , 2012 .

[13]  K. Kitamoto,et al.  Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae , 2011, Applied Microbiology and Biotechnology.

[14]  P. Westh,et al.  A comparative study of activity and apparent inhibition of fungal β‐glucosidases , 2010, Biotechnology and bioengineering.

[15]  Liisa Viikari,et al.  Characterisation of Specific Activities and Hydrolytic Properties of Cell-Wall-Degrading Enzymes Produced by Trichoderma reesei Rut C30 on Different Carbon Sources , 2010, Applied biochemistry and biotechnology.

[16]  D. Wilson Cellulases and biofuels. , 2009, Current opinion in biotechnology.

[17]  O. Singh,et al.  Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives , 2008, Journal of Industrial Microbiology & Biotechnology.

[18]  J. Guarro,et al.  Invasive Mycotic Infections Caused by Chaetomium perlucidum, a New Agent of Cerebral Phaeohyphomycosis , 2003, Journal of Clinical Microbiology.

[19]  V. Bisaria,et al.  Microbial β-Glucosidases: Cloning, Properties, and Applications , 2002 .

[20]  V. Baraznenok,et al.  Cellulase complex from Chaetomium cellulolyticum: isolation and properties of major components. , 1999, Biochemistry. Biokhimiia.

[21]  M. Tuite,et al.  Heterologous gene expression in filamentous fungi , 1989 .

[22]  T. K. Ghose Measurement of cellulase activities , 1987 .

[23]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[24]  J. Sumner THE ESTIMATION OF SUGAR IN DIABETIC URINE, USING DINITROSALICYLIC ACID , 1924 .

[25]  T. C. McIlvaine,et al.  A BUFFER SOLUTION FOR COLORIMETRIC COMPARISON , 1921 .

[26]  R. D. Gietz,et al.  Yeast transformation by the LiAc/SS carrier DNA/PEG method. , 2014, Methods in molecular biology.

[27]  T. Pakula,et al.  The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). , 2012, Microbiology.

[28]  M. N. Karim,et al.  Model-Based Fed-Batch for High-Solids Enzymatic Cellulose Hydrolysis , 2009, Applied biochemistry and biotechnology.

[29]  A. El-Gindy,et al.  Purification and some properties of exo-1,4-beta-glucanase from Chaetomium olivaceum. , 2003, Acta microbiologica Polonica.

[30]  José da Cruz Francisco,et al.  Supercritical fluids as alternative, safe, food-processing media: an overview. , 2003 .

[31]  V. Bisaria,et al.  Microbial beta-glucosidases: cloning, properties, and applications. , 2002, Critical reviews in biotechnology.

[32]  Ashutosh Kumar Singh,et al.  Microorganisms and enzymes involved in the degradation of plant fiber cell walls. , 1997, Advances in biochemical engineering/biotechnology.

[33]  M Penttilä,et al.  A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. , 1987, Gene.