Nonthreshold anomalous time advance in multichannel scattering

We investigate scattering in a one-dimensional two-channel system using a model that is analytically tractable. We find anomalously large time advance over a small energy range of the transmission in the incident channel. This time advance for transmission occurs at energies above threshold of the second channel. Since this feature is related to the phase shifts of the interaction it is not peculiar to the form of the interaction. The anomalous times advance can be related to the pole structure of the $S$ matrix, in particular resonant and shadow poles of the $S$ matrix.

[1]  F. M. Toyama,et al.  Accurate numerical solutions of the time-dependent Schrödinger equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. G. Muga,et al.  Complex absorbing potentials , 2004 .

[3]  C. Moyer Numerov extension of transparent boundary conditions for the Schrodinger equation in one dimension , 2004 .

[4]  H. Winful,et al.  Delay time and the hartman effect in quantum tunneling. , 2003, Physical review letters.

[5]  K. Kiers,et al.  Quantum mechanical and semi-classical treatment of quantum excitations due to the passage of a particle , 2003 .

[6]  J. G. Muga,et al.  Bounds and enhancements for negative scattering time delays , 2002 .

[7]  W. Greiner,et al.  Emission of electromagnetic radiation in α-decay , 2001 .

[8]  Sergey I. Vinitsky,et al.  Magnus-factorized method for numerical solving the time-dependent Schrödinger equation , 2000 .

[9]  Sergey I. Vinitsky,et al.  A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation , 1999 .

[10]  J. G. Muga,et al.  Negative time delays in one dimensional absorptive collisions , 1998 .

[11]  J. G. Muga,et al.  SOLVABLE MODEL FOR QUANTUM WAVEPACKET SCATTERING IN ONE DIMENSION , 1998 .

[12]  Aephraim M. Steinberg,et al.  An atom optics experiment to investigate faster‐than‐light tunneling , 1998, quant-ph/9810009.

[13]  N. Sathyamurthy,et al.  Time-dependent quantum mechanical approach to reactive scattering and related processes , 1997 .

[14]  G. C. McIntosh,et al.  A time‐dependent study of resonant tunneling through a double barrier , 1996 .

[15]  M. Ventra,et al.  On the number of states bound by one‐dimensional finite periodic potentials , 1995 .

[16]  M. S. Bianchi Levinson’s theorem, zero‐energy resonances, and time delay in one‐dimensional scattering systems , 1994 .

[17]  W. Dijk,et al.  Time delay in simple one‐dimensional systems , 1992 .

[18]  Claude Leforestier,et al.  A comparison of different propagation schemes for the time dependent Schro¨dinger equation , 1991 .

[19]  E. H. Hauge,et al.  Tunneling times: a critical review , 1989 .

[20]  W. Vandijk,et al.  Model analysis of the relationship between 3S1 scattering length and the root-mean-square radius of the deuteron. , 1989, Physical review. C, Nuclear physics.

[21]  Pearce Bc,et al.  Observable effects of poles and shadow poles in coupled-channel systems. , 1989 .

[22]  H. Tal-Ezer,et al.  An accurate and efficient scheme for propagating the time dependent Schrödinger equation , 1984 .

[23]  M. Razavy,et al.  Time-delay caused by scattering from an oscillating center of force , 1981 .

[24]  F. Coester,et al.  VARIATION IN NUCLEAR-MATTER BINDING ENERGIES WITH PHASE-SHIFT-EQUIVALENT TWO-BODY POTENTIALS. , 1970 .

[25]  Frank Tabakin Inverse Scattering Problem for Separable Potentials , 1969 .

[26]  Judah L. Schwartz,et al.  Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena , 1967 .

[27]  R. Eden,et al.  Poles and Shadow Poles in the Many-Channel S Matrix , 1964 .

[28]  R. Newton Analytic Properties of Radial Wave Functions , 1960 .

[29]  F. Smith,et al.  Lifetime Matrix in Collision Theory , 1960 .

[30]  H. Feshbach Unified Theory of Nuclear Reactions , 1958 .

[31]  Rolf Landauer,et al.  Barrier interaction time in tunneling , 1994 .

[32]  Eitan Abraham,et al.  Two‐dimensional time‐dependent quantum‐mechanical scattering event , 1984 .

[33]  A. N. Kamal,et al.  SOLUBLE TWO-CHANNEL PROBLEMS IN POTENTIAL SCATTERING. , 1970 .