α-Cyclodextrin/aminobenzoic acid binding in salt solutions at different pH: dependence on guest structure.

[1]  O. Björneholm,et al.  Molecular sinkers: X-ray photoemission and atomistic simulations of benzoic acid and benzoate at the aqueous solution/vapor interface. , 2012, The journal of physical chemistry. B.

[2]  Chao Zeng,et al.  The effect of nitrate, bicarbonate and natural organic matter on the degradation of sunscreen agent p-aminobenzoic acid by simulated solar irradiation. , 2011, The Science of the total environment.

[3]  L. Szente,et al.  Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins. , 2011, Journal of pharmaceutical and biomedical analysis.

[4]  M. Fedorov,et al.  Selective Na(+)/K(+) effects on the formation of α-cyclodextrin complexes with aromatic carboxylic acids: competition for the guest. , 2010, The journal of physical chemistry. B.

[5]  P. Vos,et al.  Encapsulation for preservation of functionality and targeted delivery of bioactive food components , 2010 .

[6]  Wim E Hennink,et al.  Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. , 2009, Biomacromolecules.

[7]  J. Goodman,et al.  To switch or not to switch: the effects of potassium and sodium ions on alpha-poly-L-glutamate conformations in aqueous solutions. , 2009, Journal of the American Chemical Society.

[8]  E. Norkus Metal ion complexes with native cyclodextrins. An overview , 2009 .

[9]  I. Terekhova Volumetric and calorimetric study on complex formation of cyclodextrins with aminobenzoic acids , 2009 .

[10]  S. Eisebitt,et al.  Cation-specific interactions with carboxylate in amino acid and acetate aqueous solutions: X-ray absorption and ab initio calculations. , 2008, The journal of physical chemistry. B.

[11]  R. Kumeev,et al.  Inclusion complex formation of α- and β-cyclodextrins with aminobenzoic acids in aqueous solution studied by 1H NMR , 2007 .

[12]  Dominique Duchêne,et al.  Cyclodextrins and their pharmaceutical applications. , 2007, International journal of pharmaceutics.

[13]  B. Shanthi,et al.  Solvatochromism, prototropism and complexation of para-aminobenzoic acid , 2006 .

[14]  T. Stalin,et al.  Intramolecular charge transfer effects on 3-aminobenzoic acid , 2006 .

[15]  W. Lewandowski,et al.  Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids , 2005 .

[16]  K. Uekama [Pharmaceutical application of cyclodextrins as multi-functional drug carriers]. , 2004, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.

[17]  J. van Stam,et al.  Higher-Order Cyclodextrin Complexes: The Naphthalene System , 2004 .

[18]  O. Kulikov,et al.  Enthalpic characteristics of interactions occurring between an ascorbic acid and some saccharides in aqueous solutions , 2004 .

[19]  B. Goodfellow,et al.  How alkali-metal cations affect the inclusion of decanoic acid in β-cyclodextrin , 2003 .

[20]  A. Agostiano,et al.  The effects of increasing NaCl concentration on the stability of inclusion complexes in aqueous solution , 2003 .

[21]  Q. Guo,et al.  A Theoretical Study on the Inclusion Complexation of Cyclodextrins with Inorganic Cations and Anions , 2002 .

[22]  S. Shaomin,et al.  Study on molecular recognition of para-aminobenzoic acid species by α-, β- and hydroxypropyl-β-cyclodextrin , 2002 .

[23]  G. González‐Gaitano,et al.  Inclusion complexes of nabumetone with β-cyclodextrins: thermodynamics and molecular modelling studies. Influence of sodium perchlorate† , 2001 .

[24]  B. Honig,et al.  New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects , 1996 .

[25]  Y. Yano,et al.  Differential interactions of cyclodextrins with hydrophobic derivatives of sepharose CL-4B , 1995 .

[26]  B. Honig,et al.  Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory , 1994 .

[27]  J. Mollin,et al.  Thermodynamic Parameters for the Ionization of Some Amino Acids, Benzoic Acid, Aminobenzoic Acids, and Organic Nitrogen Compounds in Ethanol + Water at 25 .degree.C , 1994 .

[28]  I. Sanemasa,et al.  A new method for determining cyclodextrin complex formation constants with electrolytes in aqueous medium. , 1988 .

[29]  L. M. Schwartz,et al.  13C NMR determination of acid-base tautomerization equilibria , 1984 .

[30]  K. Harata Induced circular dichroism of cycloamylose complexes with meta- and para-disubstituted benzenes , 1981 .

[31]  D. Gruen,et al.  The Isoelectric Nature of Sulfanilamide and p-Aminobenzoic Acid , 1945 .

[32]  T. Mcmeekin,et al.  STUDIES IN THE PHYSICAL CHEMISTRY OF AMINO ACIDS, PEPTIDES, AND RELATED SUBSTANCES , 1938, The Journal of general physiology.

[33]  K. D. Collins,et al.  Charge density-dependent strength of hydration and biological structure. , 1997, Biophysical journal.

[34]  Jos H. Beijnen,et al.  Cyclodextrins in the Pharmaceutical Field , 1991 .

[35]  L. Hansen,et al.  Thermodynamics of binding of guest molecules to α- and β-cyclodextrins , 1973 .