Stochastic finite element model updating and its application in aeroelasticity

Knowledge in the field of modelling and predicting the dynamic responses of structures is constantly developing. Modelling of uncertainty is considered as one of the tools that increases confidence by providing extra information. This information may then be useful in planning physical tests. However, the complexity of structures together with uncertainty-based methods leads inevitably to increased computation; therefore deterministic approaches are preferred by industry and a safety factor is incorporated to account for uncertainties. However, the selection of a proper safety factor relies on engineering insight. Hence, there has been much interest in developing efficient uncertainty-based methods with a good degree of accuracy. This thesis focuses on the uncertainty propagation methods; namely Monte Carlo Simulation, first-order and second-order perturbation, asymptotic integral, interval analysis, fuzzy-logic analysis and meta-models. The feasibility of using these methods (in terms of computational time) to propagate structural model variability to linear and Computational Fluid Dynamic (CFD) based aeroelastic stability is investigated. In this work only the uncertainty associated with the structural model is addressed, but the approaches developed can be also used for other types of non-structural uncertainties. Whichever propagation method is used, an issue of very practical significance is the initial estimation of the parameter uncertainty to be propagated particularly when the uncertain parameters cannot be measured, such as damping and stiffness terms in mechanical joints or material-property variability. What can be measured is the variability in dynamic behaviour as represented by natural frequencies, mode shapes, or frequency response functions. The inverse problem then becomes one of inferring the parameter uncertainty from statistical mea-

[1]  Michael I. Friswell,et al.  The adjustment of structural parameters using a minimum variance estimator , 1989 .

[2]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[3]  John E. Mottershead,et al.  Clustering of parameter sensitivities: Examples from a helicopter airframe model updating exercise , 2009 .

[4]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[5]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[6]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[7]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[8]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[9]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[10]  K. J. Badcockand,et al.  Prediction of Bifurcation Onset of Large Order Aeroelastic Models , 2008 .

[11]  John E. Mottershead,et al.  Modelling and updating of large surface-to-surface joints in the AWE-MACE structure , 2006 .

[12]  Eun-Taik Lee,et al.  Update of corrected stiffness and mass matrices based on measured dynamic modal data , 2009 .

[13]  Jens Cattarius,et al.  Numerical Wing/Store Interaction Analysis of a Parametric F16 Wing , 1999 .

[14]  John E. Mottershead,et al.  Geometric Parameters for Finite Element Model Updating of Joints and Constraints , 1996 .

[15]  M. Friswell,et al.  Uncertainty identification by the maximum likelihood method , 2005 .

[16]  J. Peter,et al.  Direct update of dynamic mathematical models from modal test data , 1987 .

[17]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[18]  Friswell,et al.  THE DETERMINATION OF CONVEX SETS OF UNCERTAINTY IN STRUCTURAL , 2007 .

[19]  M. Hanss,et al.  A fuzzy arithmetical approach to the solution of finite element problems with uncertain parameters , 2000 .

[20]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[21]  Marc Böswald,et al.  Analysis of Sources and Quantification of Uncertainty in Experimental Modal Data , 2006 .

[22]  Ken Badcock,et al.  The Application of Sparse Matrix Techniques to the CFD-Based Aeroelastic Bifurcation Analysis of a Symmetric Aerofoil , 2006 .

[23]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[24]  J. E. Mottershead,et al.  Model Updating Using Bayesian Estimation , 2006 .

[25]  Søren Nielsen,et al.  Closure of "Interval Algebra to Deal with Pattern Loading and Structural Uncertainties" , 1995 .

[26]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[27]  C. S. Manohar,et al.  Progress in structural dynamics with stochastic parameter variations: 1987-1998 , 1999 .

[28]  M. W. Kehoe,et al.  Ground vibration test of an F-16 airplane with modified decoupler pylons , 1986 .

[29]  Chris L. Pettit,et al.  investigated aeroelastic behaviors arising from variability in three input variables , the initial pitch angle and two stiffness coefficients , 2006 .

[30]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[31]  Jon D. Collins,et al.  Statistical Identification of Structures , 1973 .

[32]  David Moens,et al.  Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis , 2006 .

[33]  Paul Sas,et al.  Modal Analysis Theory and Testing , 2005 .

[34]  Constantine Bekas,et al.  Computation of Smallest Eigenvalues using Spectral Schur Complements , 2005, SIAM J. Sci. Comput..

[35]  Dennis Göge,et al.  Automatic updating of large aircraft models using experimental data from ground vibration testing , 2003 .

[36]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[37]  Karen Willcox,et al.  APPLICATION OF REDUCED-ORDER AERODYNAMIC MODELING TO THE ANALYSIS OF STRUCTURAL UNCERTAINTY IN BLADED DISKS , 2002 .

[38]  J. D. Collins,et al.  The eigenvalue problem for structural systems with statistical properties. , 1969 .

[39]  W. Dong,et al.  Vertex method for computing functions of fuzzy variables , 1987 .

[40]  Sanjay R. Arwade,et al.  Computational Analysis of Randomness in Structural Mechanics , 2011 .

[41]  Chris L. Pettit,et al.  Uncertainty Quantification in Aeroelasticity: Recent Results and Research Challenges , 2004 .

[42]  W. Härdle Nonparametric and Semiparametric Models , 2004 .

[43]  R. Fox,et al.  Rates of change of eigenvalues and eigenvectors. , 1968 .

[44]  J. Mottershead,et al.  Vibration mode shape recognition using image processing , 2009 .

[45]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[46]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[47]  Milton C. Chew Distributions in Statistics: Continuous Univariate Distributions-1 and 2 , 1971 .

[48]  N. P. Seif,et al.  Inverse Problem of the Interval Linear System of Equations , 1999, Computing.

[49]  Sondipon Adhikari,et al.  Distributed parameter model updating using the Karhunen–Loève expansion , 2010 .

[50]  K. Binder Applications of the Monte Carlo Method in Statistical Physics , 2012 .

[51]  Singiresu S Rao,et al.  Optimization of Aircraft Wings for Gust Loads: Interval Analysis-Based Approach , 2008 .

[52]  J.E. Mottershead,et al.  Stochastic model updating: Part 2—application to a set of physical structures , 2006 .

[53]  Ken Badcock,et al.  CFD based aeroelastic stability predictions under the influence of structural variability. , 2009 .

[54]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[55]  Wim Desmet,et al.  An efficient response surface based optimisation method for non-deterministic harmonic and transient dynamic analysis , 2009 .

[56]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[57]  Alex Berman,et al.  Optimal weighted orthogonalization of measured modes , 1979 .

[58]  E. ALBANO,et al.  A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. , 1969 .

[59]  Randall J. Allemang,et al.  A Correlation Coefficient for Modal Vector Analysis , 1982 .

[60]  S. Adhikari Complex modes in stochastic systems , 2004 .

[61]  M. Friswell,et al.  Perturbation methods for the estimation of parameter variability in stochastic model updating , 2008 .

[62]  Dale M. Pitt,et al.  Probabilistic Aeroelastic Analysis and Its Implications on Flutter Margin Requirements , 2008 .

[63]  Xiaojun Wang,et al.  Eigenvalue bounds of structures with uncertain-but-bounded parameters , 2005 .

[64]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[65]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[66]  P. C. Gehlen,et al.  Computer Experiments , 1996 .

[67]  Ken Badcock,et al.  Propagation of structural uncertainty to linear aeroelastic stability , 2010 .

[68]  Thomas F. Coleman,et al.  A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..

[69]  Alex Berman,et al.  Mass Matrix Correction Using an Incomplete Set of Measured Modes , 1979 .

[70]  W. Graf,et al.  Fuzzy structural analysis using α-level optimization , 2000 .

[71]  Menahern Baruch,et al.  Optimal Weighted Orttiogonalization of Measured Modes , 1978 .

[72]  Jonathan E. Cooper,et al.  Introduction to Aircraft Aeroelasticity and Loads , 2007 .

[73]  Earl H. Dowell,et al.  Stochastic Analysis of a Nonlinear Aeroelastic Model Using the Response Surface Method , 2006 .

[74]  C. P. Fritzen,et al.  Updating of finite element models by means of measured information , 1991 .

[75]  John E. Mottershead,et al.  Model structure correction and updating of aeroengine casings using fictitious mass modifications , 2005 .

[76]  Nicholas A J Lieven,et al.  DYNAMIC FINITE ELEMENT MODEL UPDATING USING SIMULATED ANNEALING AND GENETIC ALGORITHMS , 1997 .

[77]  A. Kabe Stiffness matrix adjustment using mode data , 1985 .

[78]  J. Cooper,et al.  Design of Composite Wings Including Uncertainties : A Probabilistic Approach , 2009 .

[79]  Robert W. Walters,et al.  Uncertainty analysis for fluid mechanics with applications , 2002 .

[80]  Chris L. Pettit,et al.  Uncertainties and dynamic problems of bolted joints and other fasteners , 2005 .

[81]  Fu-Shang Wei,et al.  Mass and stiffness interaction effects in analytical model modification , 1990 .

[82]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[83]  Jose Manuel Rios Fonseca,et al.  Uncertainty in structural dynamic models. , 2005 .

[84]  James L. Beck,et al.  A Bayesian probabilistic approach to structural health monitoring , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[85]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[86]  Michael Hanss,et al.  The transformation method for the simulation and analysis of systems with uncertain parameters , 2002, Fuzzy Sets Syst..

[87]  Michael Link,et al.  Stochastic model updating—Covariance matrix adjustment from uncertain experimental modal data , 2010 .

[88]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[89]  Marco Ceccarelli,et al.  Distinguished Figures in Mechanism and Machine Science , 2020, History of Mechanism and Machine Science.

[90]  Singiresu S Rao,et al.  Fuzzy finite element approach for the analysis of imprecisely defined systems , 1995 .

[91]  Christian Soize,et al.  Robust Updating of Uncertain Computational Models Using Experimental Modal Analysis , 2008 .

[92]  Ken Badcock,et al.  Transonic Aeroelastic Stability Predictions Under the Influence of Structural Variability , 2010 .

[93]  Marc P. Mignolet,et al.  Flutter Analysis with Structural Uncertainty by Using CFD- based Aerodynamic ROM , 2008 .

[94]  Z. Qiu,et al.  Stochastic sensitivity analysis of eigenvalues and eigenvectors , 1995 .

[95]  John E. Mottershead,et al.  Combining Subset Selection and Parameter Constraints in Model Updating , 1998 .

[96]  Hong Hao,et al.  Damage identification of structures with uncertain frequency and mode shape data , 2002 .

[97]  Giitiro Suzuki A consistent estimator for the mean deviation of the pearson type distribution , 1965 .

[98]  Li Chen,et al.  Fuzzy finite-element approach for the vibration analysis of imprecisely-defined systems , 1997 .

[99]  Jakob Kuttenkeuler,et al.  Aeroelastic tailoring considering uncertainties in material properties , 1998 .

[100]  C. Maresa,et al.  Stochastic model updating : Part 1 — theory and simulated example , 2006 .

[101]  Cv Clemens Verhoosel,et al.  Uncertainty and Reliability Analysis of Fluid-Structure Stability Boundaries , 2009 .

[102]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[103]  A. M. Mathai,et al.  Quadratic forms in random variables : theory and applications , 1992 .

[104]  Jm M. Ko,et al.  An improved perturbation method for stochastic finite element model updating , 2008 .

[105]  John E. Mottershead,et al.  REGULARISATION METHODS FOR FINITE ELEMENT MODEL UPDATING , 1998 .

[106]  Sondipon Adhikari,et al.  Random matrix eigenvalue problems in structural dynamics , 2007 .

[107]  Shirley J. Dyke,et al.  System equivalent reduction expansion process , 2008 .

[108]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[109]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[110]  D. Moens,et al.  An interval finite element approach for the calculation of envelope frequency response functions , 2004 .

[111]  K. Pearson Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .

[112]  Mohammad H. Kurdi,et al.  Uncertainty Quantification of the Goland+ Wing's Flutter Boundary , 2007 .

[113]  Ken Badcock,et al.  Estimation of flutter boundaries in the presence of structural uncertainty by probabilistic and fuzzy methods , 2009 .

[114]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[115]  Ken Badcock,et al.  Direct Aeroelastic Bifurcation Analysis of a Symmetric Wing Based on Euler Equations , 2005 .

[116]  Jonathan E. Cooper,et al.  LIMIT CYCLE OSCILLATION PREDICTION FOR AEROELASTIC SYSTEMS WITH DISCRETE BILINEAR STIFFNESS , 2005 .

[117]  R. Gunst Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[118]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[119]  F. Hemez,et al.  Bayesian Model Screening for the Identification of Nonlinear Mechanical Structures , 2003 .

[120]  David Moens,et al.  A fuzzy finite element procedure for the calculation of uncertain frequency-response functions of damped structures: Part 1—Procedure , 2005 .

[121]  Jeffrey V. Zweber,et al.  Numerical Analysis of Store-Induced Limit-Cycle Oscillation , 2004 .

[122]  Michael Hanss,et al.  Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic , 2010 .

[123]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[124]  F. W. Cazier,et al.  Flight test of a decoupler pylon for wing/store flutter suppression , 1986 .

[125]  R. Ibrahim,et al.  Effect of Stiffness Uncertainties on the Flutter of a Cantilever Wing , 2008 .

[126]  Mehdi Ghoreyshi,et al.  Accelerating the Numerical Generation of Aerodynamic Models for Flight Simulation , 2009 .

[127]  Hong Hao,et al.  Statistical damage identification of structures with frequency changes , 2003 .

[128]  Gary C. Hart,et al.  Modal Analysis of Random Structural Systems , 1972 .