Improvements to ltlsynt

We summarize ltlsynt’s evolution since 2018.

[1]  Michael Luttenberger,et al.  Practical synthesis of reactive systems from LTL specifications via parity games , 2019, Acta Informatica.

[2]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..

[3]  Robert K. Brayton,et al.  ABC: An Academic Industrial-Strength Verification Tool , 2010, CAV.

[4]  Adrien Pommellet,et al.  Practical "Paritizing" of Emerson-Lei Automata , 2020, ATVA.

[5]  Tom van Dijk,et al.  Oink: an Implementation and Evaluation of Modern Parity Game Solvers , 2018, TACAS.

[6]  J. Eisinger,et al.  Mechanizing the Powerset Construction for Restricted Classes of ω-Automata ⋆ , 2007 .

[7]  Olivier Carton,et al.  Computing the Rabin Index of a Parity Automaton , 1999, RAIRO Theor. Informatics Appl..

[8]  Jan Reineke,et al.  MEMIN: SAT-based exact minimization of incompletely specified Mealy machines , 2015, 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[9]  Salomon Sickert,et al.  LTL to Deterministic Emerson-Lei Automata , 2017, GandALF.

[10]  Maximilien Colange,et al.  Reactive Synthesis from LTL Specification with Spot , 2018 .

[11]  Alexandre Duret-Lutz,et al.  Spot 2 . 0 — a framework for LTL and ω-automata manipulation , 2016 .

[12]  Jan Kretínský,et al.  One Theorem to Rule Them All: A Unified Translation of LTL into ω-Automata , 2018, LICS.

[13]  Bernd Finkbeiner,et al.  Specification Decomposition for Reactive Synthesis , 2021, NFM.

[14]  Alexandre Duret-Lutz,et al.  Compositional Approach to Suspension and Other Improvements to LTL Translation , 2013, SPIN.