Thickened juvenile lower crust-derived ~ 90 Ma adakitic rocks in the central Lhasa terrane, Tibet

[1]  H. Sinclair,et al.  Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau , 2015 .

[2]  M. Santosh,et al.  Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet☆ , 2014 .

[3]  J. Dai,et al.  Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone , 2014 .

[4]  Li Hua-lian Geochronology, Geochemistry, Tectonic Setting and Metallogenetic Significance of the Late Cretaceous Quartz Monzonite in the Northwestern Gangdise Terrane , 2014 .

[5]  T. Harrison,et al.  Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time , 2014 .

[6]  D. Wyman,et al.  Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet , 2013 .

[7]  D. Wyman,et al.  Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: Lithosphere–asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet) , 2013 .

[8]  D. Wyman,et al.  Late Cretaceous crustal growth in the Gangdese area, southern Tibet: Petrological and Sr–Nd–Hf–O isotopic evidence from Zhengga diorite–gabbro , 2013 .

[9]  Hong-lin Yuan,et al.  Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent–continent collision zone , 2013 .

[10]  Z. Hou,et al.  The origin and pre-Cenozoic evolution of the Tibetan Plateau , 2013 .

[11]  T. Sun,et al.  Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon , 2013 .

[12]  Chengshan Wang,et al.  Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau? , 2013 .

[13]  Liang Liu,et al.  Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang Province, Southeast China: Implications for magma mixing and crust–mantle interaction , 2013 .

[14]  G. Pan,et al.  Tectonic evolution of the Qinghai-Tibet Plateau , 2012 .

[15]  Qinghai Zhang,et al.  Early Cretaceous Gangdese retroarc foreland basin evolution in the Selin Co basin, central Tibet: evidence from sedimentology and detrital zircon geochronology , 2011 .

[16]  Z. Hou,et al.  The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth , 2010 .

[17]  J. Sha,et al.  Rudists of Tibet and the Tarim Basin, China: Significance to Requieniidae Phylogeny , 2010, Journal of Paleontology.

[18]  Ma Guo-lin Cretaceous volcanic rocks in northern Lhasa Block:constraints on the tectonic evolution of the Gangdise Arc , 2010 .

[19]  Fu-Yuan Wu,et al.  Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet , 2009 .

[20]  Dunyi Liu,et al.  The Nature and timing of crustal thickening in Southern Tibet : geochemical and zircon Hf isotopic constraints from postcollisional adakites , 2009 .

[21]  Yigang Xu,et al.  Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze Craton: Partial melts of a thickened lower crust , 2009 .

[22]  Wei-Qiang Ji,et al.  Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet , 2009 .

[23]  G. Dong,et al.  Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction? , 2009 .

[24]  Dunyi Liu,et al.  Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications , 2008 .

[25]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[26]  G. Gehrels,et al.  Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet , 2008 .

[27]  G. Pan,et al.  SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet , 2008 .

[28]  Z. Hou,et al.  Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet , 2008 .

[29]  D. Wyman,et al.  Underplating-related adakites in Xinjiang Tianshan, China , 2008 .

[30]  L. Shao Petrology and geochemistry of the granulite xenoliths from Cenozoic Qiangtang volcanic field: Implication for the nature of the lower crust in the northern Tibetan plateau and the genesis of Cenozoic volcanic rocks. , 2008 .

[31]  Wang Lq,et al.  Petrogenesis of Daxiong pluton in western Gangdese, Tibet: zircon U-Pb dating and Hf isotopic constraints , 2008 .

[32]  Yuan Si-hua Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues , 2008 .

[33]  P. Kapp,et al.  Cretaceous‐Tertiary structural evolution of the north central Lhasa terrane, Tibet , 2007 .

[34]  A. Kerr,et al.  Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram , 2007 .

[35]  G. Gehrels,et al.  Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet , 2007 .

[36]  A. Leier,et al.  The Gangdese retroarc thrust belt revealed , 2007 .

[37]  J. Richards,et al.  Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis , 2007 .

[38]  Xiaoming Qu,et al.  Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet , 2007 .

[39]  G. Gehrels,et al.  Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain , 2007 .

[40]  Su Zhou,et al.  The tectonic-setting of ophiolites in the western Qinghai-Tibet Plateau, China , 2007 .

[41]  Dunyi Liu,et al.  Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet , 2006 .

[42]  D. Wyman,et al.  Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu–Au mineralization , 2006 .

[43]  P. Castillo An overview of adakite petrogenesis , 2006 .

[44]  C. Hawkesworth,et al.  Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon , 2006, Nature.

[45]  P. Jian,et al.  Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization , 2006 .

[46]  Qu Xiao Discovery and singificance of copper-bearing bimodal rock series in Coqin area of Tibet. , 2006 .

[47]  Zhu Dicheng Identification for the Mesozoic OIB-type Basalts in Central Qinghai-Tibetan Plateau:Geochronology,Geochemistry and Their Tectonic Setting , 2006 .

[48]  Pan Gui Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. , 2006 .

[49]  R. Altherr,et al.  Post-collisional plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (Eastern Pontides, Turkey) , 2005 .

[50]  T. Harrison,et al.  Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet , 2005 .

[51]  Qiang Wang,et al.  Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting , 2005 .

[52]  J. Adam,et al.  Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis , 2005 .

[53]  Mo Xuan-xue Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese,Tibet and Implication for Crustal Growth and Evolution , 2005 .

[54]  Q. Zhang,et al.  Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism , 2005 .

[55]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[56]  Wei Xu,et al.  Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent , 2004 .

[57]  Kai‐Jun Zhang,et al.  Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China , 2004 .

[58]  Z. Bai,et al.  Geochemistry and Petrogenesis of the Tongshankou and Yinzu Adakitic Intrusive Rocks and the Associated Porphyry Copper‐Molybdenum Mineralization in Southeast Hubei, East China , 2004 .

[59]  Xiaoming Qu,et al.  Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet , 2004 .

[60]  J. Shao-yong High Precision Nd Isotope Measurement by Triton TI Mass Spectrometry , 2004 .

[61]  H. Martina,et al.  An overview of adakite , tonalite – trondhjemite – granodiorite ( TTG ) , and sanukitoid : relationships and some implications for crustal evolution , 2004 .

[62]  M. Norman,et al.  Growth of early continental crust by partial melting of eclogite , 2003, Nature.

[63]  L. Ding,et al.  Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction , 2003 .

[64]  M. Bizzarro,et al.  A New Digestion and Chemical Separation Technique for Rapid and Highly Reproducible Determination of Lu/Hf and Hf Isotope Ratios in Geological Materials by MC‐ICP‐MS , 2003 .

[65]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[66]  DingLin,et al.  New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision , 2003 .

[67]  T. Andersen Correction of common lead in U-Pb analyses that do not report 204Pb , 2002 .

[68]  R. Shinjo,et al.  Origin of mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? , 2002 .

[69]  W. Griffin,et al.  Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes , 2002 .

[70]  肖龙,et al.  Experimental constraints on the origin of potassium-rich adakites in eastern China. , 2002 .

[71]  RobertWKAY,et al.  Andean adakites:three ways to make them安第斯埃达克岩:三种成因模式 , 2002 .

[72]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[73]  Kai‐Jun Zhang Cretaceous palaeogeography of Tibet and adjacent areas (China): tectonic implications , 2000 .

[74]  R. Schuster,et al.  Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis , 1999 .

[75]  H. Martin Adakitic magmas: modern analogues of Archaean granitoids , 1999 .

[76]  R. Solidum,et al.  Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting , 1999 .

[77]  T. Harrison,et al.  Origin and episodic emplacement of the Manaslu Intrusive Complex , 1999 .

[78]  X. Wang,et al.  Did the Indo-Asian collision alone create the Tibetan plateau? , 1997 .

[79]  N. Petford,et al.  Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru , 1996 .

[80]  R. Parrish,et al.  Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya , 1996 .

[81]  S. Kay,et al.  Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America , 1993, The Journal of Geology.

[82]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[83]  N. Petford,et al.  Generation of sodium-rich magmas from newly underplated basaltic crust , 1993, Nature.

[84]  E. Watson,et al.  Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites , 1991 .

[85]  N. Harris,et al.  Cretaceous plutonism in Central Tibet : an example of post-collision magmatism ? , 1990 .

[86]  M. Drummond,et al.  A model for Trondhjemite‐Tonalite‐Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons , 1990 .

[87]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[88]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[89]  Li Huan,et al.  The Tibetan plateau: regional stratigraphic context and previous work , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[90]  M. Leeder,et al.  Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[91]  J. Minster,et al.  Quantitative models of trace element behavior in magmatic processes , 1978 .

[92]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .