Thioredoxin and glutathione systems in Plasmodium falciparum.

Despite a 50% decrease in malaria infections between 2000 and 2010, malaria is still one of the three leading infectious diseases with an estimated 216 million cases worldwide in 2010. More than 90% of all malaria infections were caused by Plasmodium falciparum, a unicellular eukaryotic parasite that faces oxidative stress challenges while developing in Anopheles mosquitoes and humans. Reactive oxygen and nitrogen species threatening the parasite are either endogenously produced by heme derived from hemoglobin degradation or they are from exogenous sources such as the host immune defense. In order to maintain the intracellular redox balance, P. falciparum employs a complex thioredoxin and glutathione system based on the thioredoxin reductase/thioredoxin and glutathione reductase/glutathione couples. P. falciparum thioredoxin reductase reduces thioredoxin and a range of low molecular weight compounds, while glutathione reductase is highly specific for its substrate glutathione disulfide. Since Plasmodium spp. lack catalase and a classical glutathione peroxidase, their redox balance depends on a complex set of five peroxiredoxins differentially located in the cytosol, apicoplast, mitochondria, and nucleus with partially overlapping substrate preferences. Moreover, P. falciparum employs a set of members belonging to the thioredoxin superfamily such as three thioredoxins, two thioredoxin-like proteins, a dithiol and three monocysteine glutaredoxins, and a redox-active plasmoredoxin with largely redundant functions. This review aims at summarizing our current knowledge on the functional redox networks of the malaria parasite P. falciparum.

[1]  G. Jaramillo-Gutierrez,et al.  Reactive Oxygen Species Modulate Anopheles gambiae Immunity against Bacteria and Plasmodium* , 2008, Journal of Biological Chemistry.

[2]  R. Schirmer,et al.  Kinetic Characterization of Glutathione Reductase from the Malarial Parasite Plasmodium falciparum , 2000, The Journal of Biological Chemistry.

[3]  I. Coppens,et al.  The Glutathione Biosynthetic Pathway of Plasmodium Is Essential for Mosquito Transmission , 2009, PLoS pathogens.

[4]  NMR assignments of oxidised thioredoxin from Plasmodium falciparum , 2009, Biomolecular NMR assignments.

[5]  S. Kano,et al.  Roles of 1‐Cys peroxiredoxin in haem detoxification in the human malaria parasite Plasmodium falciparum , 2005, The FEBS journal.

[6]  S. Rahlfs,et al.  Peroxiredoxin systems of protozoal parasites. , 2007, Sub-cellular biochemistry.

[7]  P. Karplus,et al.  Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signaling , 2003, Science.

[8]  C. Nickel,et al.  Glutathione – Functions and Metabolism in the Malarial Parasite Plasmodium falciparum , 2003, Biological chemistry.

[9]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[10]  A. Casini,et al.  New uses for old drugs. Auranofin, a clinically established antiarthritic metallodrug, exhibits potent antimalarial effects in vitro: Mechanistic and pharmacological implications , 2008, FEBS letters.

[11]  S. Müller,et al.  Identification and Characterization of the Functional Amino Acids at the Active Site of the Large Thioredoxin Reductase fromPlasmodium falciparum * , 1997, The Journal of Biological Chemistry.

[12]  S. Müller,et al.  Isolation and functional analysis of two thioredoxin peroxidases (peroxiredoxins) from Plasmodium falciparum. , 2001, Molecular and biochemical parasitology.

[13]  S. Rahlfs,et al.  Molecular Genetics Evidence for the in Vivo Roles of the Two Major NADPH-dependent Disulfide Reductases in the Malaria Parasite* , 2010, The Journal of Biological Chemistry.

[14]  R. Schirmer,et al.  Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. , 2005, Angewandte Chemie.

[15]  K. Fritz-Wolf,et al.  Compounds Structurally Related to Ellagic Acid Show Improved Antiplasmodial Activity , 2008, Antimicrobial Agents and Chemotherapy.

[16]  S. Rahlfs,et al.  Thioredoxin, thioredoxin reductase, and thioredoxin peroxidase of malaria parasite Plasmodium falciparum. , 2002, Methods in enzymology.

[17]  P. Karplus,et al.  Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. , 2005, Journal of molecular biology.

[18]  S. Kano,et al.  Expression of mRNAs and proteins for peroxiredoxins in Plasmodium falciparum erythrocytic stage. , 2005, Parasitology international.

[19]  S. Rahlfs,et al.  Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: a unique bifunctional enzyme from Plasmodium falciparum. , 2011, The Biochemical journal.

[20]  Kellen L. Olszewski,et al.  Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development , 2011, Malaria Journal.

[21]  S. Rahlfs,et al.  Plasmodium falciparum Possesses a Classical Glutaredoxin and a Second, Glutaredoxin-like Protein with a PICOT Homology Domain* , 2001, The Journal of Biological Chemistry.

[22]  J. Yates,et al.  Protein S-glutathionylation in malaria parasites. , 2011, Antioxidants & redox signaling.

[23]  S. Müller,et al.  Isocitrate dehydrogenase of Plasmodium falciparum. , 2003, European journal of biochemistry.

[24]  T. Tsuboi,et al.  2-Cys Peroxiredoxin TPx-1 is involved in gametocyte development in Plasmodium berghei. , 2006, Molecular and biochemical parasitology.

[25]  C. Nickel,et al.  Thioredoxin networks in the malarial parasite Plasmodium falciparum. , 2006, Antioxidants & redox signaling.

[26]  S. Kano,et al.  Disruption of the Plasmodium falciparum 2‐Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species , 2003, FEBS letters.

[27]  T C Stadtman,et al.  Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Sang Yeol Lee,et al.  Two Enzymes in One Two Yeast Peroxiredoxins Display Oxidative Stress-Dependent Switching from a Peroxidase to a Molecular Chaperone Function , 2004, Cell.

[29]  P. Karplus,et al.  Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. , 2003, Journal of molecular biology.

[30]  S. Rahlfs,et al.  Inherited Glutathione Reductase Deficiency and Plasmodium falciparum Malaria—A Case Study , 2009, PloS one.

[31]  B. Gamain,et al.  The Putative Glutathione Peroxidase Gene of Plasmodium falciparum Codes for a Thioredoxin Peroxidase* , 2001, The Journal of Biological Chemistry.

[32]  T. Dandekar,et al.  Interactions of Methylene Blue with Human Disulfide Reductases and Their Orthologues from Plasmodium falciparum , 2007, Antimicrobial Agents and Chemotherapy.

[33]  R. Schirmer,et al.  Thioredoxin reductase two modes of catalysis have evolved. , 2000, European journal of biochemistry.

[34]  K. Fritz-Wolf,et al.  Redox regulation of Plasmodium falciparum ornithine δ-aminotransferase. , 2010, Journal of molecular biology.

[35]  Joanne M. Morrisey,et al.  Branched Tricarboxylic Acid Metabolism in Plasmodium falciparum , 2010, Nature.

[36]  S. Rahlfs,et al.  Plasmoredoxin, a novel redox-active protein unique for malarial parasites. , 2003, European journal of biochemistry.

[37]  I. Coppens,et al.  Glutathione Reductase-null Malaria Parasites Have Normal Blood Stage Growth but Arrest during Development in the Mosquito* , 2010, The Journal of Biological Chemistry.

[38]  S. Rhee,et al.  Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones. , 2011, Antioxidants & redox signaling.

[39]  Dissecting the role of glutathione biosynthesis in Plasmodium falciparum , 2012, Molecular microbiology.

[40]  S. Müller,et al.  Thioredoxin Reductase Is Essential for the Survival ofPlasmodium falciparum Erythrocytic Stages* , 2002, The Journal of Biological Chemistry.

[41]  S. Rahlfs,et al.  Plasmodium falciparum glutaredoxin-like proteins , 2005, Biological chemistry.

[42]  S. Rahlfs,et al.  Identification of Proteins Targeted by the Thioredoxin Superfamily in Plasmodium falciparum , 2009, PLoS pathogens.

[43]  Joachim Müller,et al.  Disulfide‐Reductase Inhibitors as Chemotherapeutic Agents: The Design of Drugs for Trypanosomiasis and Malaria , 1995 .

[44]  R. Schirmer,et al.  Deletion of the parasite-specific insertions and mutation of the catalytic triad in glutathione reductase from chloroquine-sensitive Plasmodium falciparum 3D7. , 2000, Molecular and biochemical parasitology.

[45]  P. Karplus,et al.  Cysteine-based Redox Switches in Enzymes , 2022 .

[46]  S. Rahlfs,et al.  Depletion of Plasmodium berghei Plasmoredoxin Reveals a Non-Essential Role for Life Cycle Progression of the Malaria Parasite , 2008, PloS one.

[47]  Organização Mundial de Saúde,et al.  World malaria report 2011 , 2011 .

[48]  T. Tsuboi,et al.  Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TPx-1 gene hinders the sporozoite development in the vector mosquito. , 2008, Molecular and biochemical parasitology.

[49]  W. Watson,et al.  Simultaneous inhibition of glutathione- and thioredoxin-dependent metabolism is necessary to potentiate 17AAG-induced cancer cell killing via oxidative stress. , 2012, Free radical biology & medicine.

[50]  C. Nickel,et al.  Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite , 2005, Biological chemistry.

[51]  P. Karplus,et al.  Peroxiredoxins in parasites. , 2012, Antioxidants & redox signaling.

[52]  H. Ginsburg,et al.  Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[53]  R. Schirmer,et al.  The Thioredoxin System of the Malaria Parasite Plasmodium falciparum , 2000, The Journal of Biological Chemistry.

[54]  C. Nickel,et al.  Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents. , 2006, Bioorganic & medicinal chemistry letters.

[55]  S. Müller,et al.  Glutathione synthetase from Plasmodium falciparum. , 2002, The Biochemical journal.

[56]  K. Becker,et al.  The aza-analogues of 1,4-naphthoquinones are potent substrates and inhibitors of plasmodial thioredoxin and glutathione reductases and of human erythrocyte glutathione reductase. , 2008, Organic & biomolecular chemistry.

[57]  G. Klebe,et al.  The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs. , 2005, Journal of molecular biology.

[58]  R. Schirmer,et al.  Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. , 2001, Science.

[59]  D. Sullivan,et al.  Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. , 1997, Annual review of microbiology.

[60]  Masset,et al.  Status of Plasmodium falciparum towards catalase , 1998, British journal of haematology.

[61]  P. Karplus,et al.  Crystal Structure of the Antioxidant Enzyme Glutathione Reductase Inactivated by Peroxynitrite* , 2002, The Journal of Biological Chemistry.

[62]  G. L. Kenyon,et al.  Mechanism-based inactivation of thioredoxin reductase from Plasmodium falciparum by Mannich bases. Implication for cytotoxicity. , 2003, Biochemistry.

[63]  Christine Nickel,et al.  Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism , 2003, Redox report : communications in free radical research.

[64]  S. Rahlfs,et al.  Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum. , 2001, European journal of biochemistry.

[65]  K. Becker,et al.  Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. , 2004, International journal for parasitology.

[66]  Melanie Rug,et al.  A novel protein export machine in malaria parasites , 2009, Nature.

[67]  H. Stunnenberg,et al.  A Genome-wide Chromatin-associated Nuclear Peroxiredoxin from the Malaria Parasite Plasmodium falciparum , 2011, The Journal of Biological Chemistry.

[68]  J. Yates,et al.  The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification , 2009, Proceedings of the National Academy of Sciences.

[69]  S. Müller,et al.  Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum , 2006, Molecular microbiology.

[70]  S. Kano,et al.  Molecular cloning and characterization of a peroxiredoxin from the human malaria parasite Plasmodium falciparum. , 2000, Molecular and biochemical parasitology.

[71]  V. Yardley,et al.  Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones--a new strategy to combat malarial parasites. , 2011, Journal of the American Chemical Society.

[72]  S. Müller,et al.  Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. , 2000, The Biochemical journal.

[73]  K. Becker,et al.  On the potential of thioredoxin reductase inhibitors for cancer therapy. , 2006, Seminars in cancer biology.

[74]  Arvind Sharma,et al.  Structural insights into thioredoxin-2: a component of malaria parasite protein secretion machinery , 2011, Scientific reports.

[75]  S. Müller,et al.  Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum. , 2004, Molecular and biochemical parasitology.

[76]  Weltgesundheitsorganisation World malaria report , 2005 .

[77]  S. Rahlfs,et al.  Compartmentation of Redox Metabolism in Malaria Parasites , 2010, PLoS pathogens.

[78]  T. Egan,et al.  Fate of haem iron in the malaria parasite Plasmodium falciparum. , 2002, The Biochemical journal.