Convolution-Free Medical Image Segmentation using Transformers

[1]  Yan Wang,et al.  TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation , 2021, ArXiv.

[2]  Fahad Shahbaz Khan,et al.  Transformers in Vision: A Survey , 2021, ACM Comput. Surv..

[3]  Matthieu Cord,et al.  Training data-efficient image transformers & distillation through attention , 2020, ICML.

[4]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[5]  Dong Ni,et al.  A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI , 2020, IEEE Transactions on Medical Imaging.

[6]  A. Yuille,et al.  Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation , 2020, ECCV.

[7]  Joseph Paul Cohen,et al.  Deep semantic segmentation of natural and medical images: a review , 2019, Artificial Intelligence Review.

[8]  Septimiu E. Salcudean,et al.  Liver Segmentation in Magnetic Resonance Imaging via Mean Shape Fitting with Fully Convolutional Neural Networks , 2019, MICCAI.

[9]  Purang Abolmaesumi,et al.  Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images , 2019, Medical Image Anal..

[10]  Tim Salimans,et al.  Axial Attention in Multidimensional Transformers , 2019, ArXiv.

[11]  Paul J. Kennedy,et al.  Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges , 2019, Journal of Digital Imaging.

[12]  Daniel Rueckert,et al.  Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project , 2019, NeuroImage.

[13]  et al.,et al.  Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge , 2018, ArXiv.

[14]  Klaus H. Maier-Hein,et al.  No New-Net , 2018, 1809.10483.

[15]  Klaus Maier-Hein,et al.  No New-Net , 2018, BrainLes@MICCAI.

[16]  Daniel Rueckert,et al.  Recurrent neural networks for aortic image sequence segmentation with sparse annotations , 2018, MICCAI.

[17]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.

[18]  Xin Yang,et al.  Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? , 2018, IEEE Transactions on Medical Imaging.

[19]  Golnoosh Samei,et al.  Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models , 2018, International Journal of Computer Assisted Radiology and Surgery.

[20]  Guido Gerig,et al.  Fully convolutional structured LSTM networks for joint 4D medical image segmentation , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[21]  Purang Abolmaesumi,et al.  Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors , 2018, International Journal of Computer Assisted Radiology and Surgery.

[22]  Ben Glocker,et al.  Semi-supervised Learning for Network-Based Cardiac MR Image Segmentation , 2017, MICCAI.

[23]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[24]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[25]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[26]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[28]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[29]  Joachim M. Buhmann,et al.  Prostate MRI Segmentation Using Learned Semantic Knowledge and Graph Cuts , 2014, IEEE Transactions on Biomedical Engineering.

[30]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[31]  S. Resnick,et al.  An image-processing system for qualitative and quantitative volumetric analysis of brain images. , 1998, Journal of computer assisted tomography.

[32]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[33]  Paul M. Thompson,et al.  Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations , 1997, Medical Image Anal..

[34]  A Horsman,et al.  Tumour volume determination from MR images by morphological segmentation , 1996, Physics in medicine and biology.

[35]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[36]  Jerry L Prince,et al.  Optimization of MR pulse sequences for Bayesian image segmentation. , 1995, Medical physics.

[37]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[38]  Geoffrey E. Hinton,et al.  Deep Learning , 2015 .

[39]  Qiang Guo,et al.  Medical Image Segmentation Based On Deformable Models And Its Applications , 2007 .

[40]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.