Accessibility of solutions of operator equations by Newton-like methods

The concept of a majorizing sequence introduced and applied by Rheinboldt in 1968 is taken up to develop a convergence theory of the Picard iteration x n + 1 = G ( x n ) for each n ? 0 for fixed points of an iteration mapping G : D 0 ? X ? X in a complete metric space X satisfying iterated contraction-like condition: d ( G ( y ) , G ( x ) ) ? ? ( d ( y , x ) , d ( y , x 0 ) , d ( x , x 0 ) ) d ( y , x ) for all x ? D 0 with y = G ( x ) ? D 0 , where x 0 ? D 0 and ? ? ? ( J 3 ) . Here J 3 is a suitable set of ( R + ) 3 to be defined in Section 2. We study the region of accessibility of fixed points of G by the Picard iteration u n + 1 = G ( u n ) , where the starting point u 0 ? D 0 is not necessarily x 0 . Our convergence theory is applied to the Newton-like iterations in Banach spaces under the center Lipschitz condition ? F x ' - F x 0 ' ? ? ω ( ? x - x 0 ? ) for a given point x 0 ? D 0 . Our results extend and improve the previous ones in the sense of the center Lipschitz condition and the region of accessibility of solutions. We apply our results to solve the nonlinear Fredholm operator equations of second kind.

[1]  L. Kohaupt,et al.  A Newton-like method for the numerical solution of nonlinear Fredholm-type operator equations , 2012, Appl. Math. Comput..

[2]  Petko D. Proinov New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems , 2010, J. Complex..

[3]  I. Argyros Computational Theory of Iterative Methods , 2014 .

[4]  Ioannis K. Argyros,et al.  Computational Theory of Iterative Methods, Volume 15 , 2007 .

[5]  Ioannis K. Argyros,et al.  Majorizing sequences for iterative methods , 2012, J. Comput. Appl. Math..

[6]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[7]  L. B. Rall,et al.  Computational Solution of Nonlinear Operator Equations , 1969 .

[8]  P. P. Zabrejko,et al.  New results on newton-kantorovich approximations with applications to nonlinear integral equations , 1997 .

[9]  Ioannis K. Argyros,et al.  On the convergence of Newton-type methods under mild differentiability conditions , 2009, Numerical Algorithms.

[10]  Jon G. Rokne,et al.  Newton's method under mild differentiability conditions with error analysis , 1971 .

[11]  Petko D. Proinov A generalization of the Banach contraction principle with high order of convergence of successive approximations , 2007 .

[12]  W. Werner Newton-like methods for the computation of fixed points , 1984 .

[13]  Krishna Kumar Singh,et al.  A Newton-like method for generalized operator equations in Banach spaces , 2013, Numerical Algorithms.

[14]  M. A. Salanova,et al.  A Newton-Like Iterative Process for the Numerical Solution of Fredholm Nonlinear Integral Equations , 2005 .

[15]  Ioannis K. Argyros,et al.  Improved generalized differentiability conditions for Newton-like methods , 2010, J. Complex..

[16]  W. Cheney,et al.  Proximity maps for convex sets , 1959 .

[17]  Y. Cho,et al.  Numerical Methods for Equations and its Applications , 2012 .

[18]  M. A. Hernández Relaxing Convergence Conditions for Newton's Method☆☆☆ , 2000 .

[19]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[20]  Sehie Park,et al.  A UNIFIED·APPROACH TO FIXED POINTS OF CONTRACTIVE MAPS , 1980 .

[21]  W. Rheinboldt A unified convergence theory for a class of iterative processes. , 1968 .

[22]  José Antonio Ezquerro,et al.  Generalized differentiability conditions for Newton's method , 2002 .

[23]  M. A. Salanova,et al.  A NEWTON-LIKE METHOD FOR SOLVING SOME BOUNDARY VALUE PROBLEMS , 2002 .

[24]  Miguel Ángel Hernández,et al.  Accessibility Of Solutions By Newton's Method , 1995, Int. J. Comput. Math..

[25]  Herbert B. Keller,et al.  Newton's Method under Mild Differential Conditions , 1970, J. Comput. Syst. Sci..