Dynamic modelling of a twin rotor MIMO system using grey box approach

This investigation presents a grey box modelling approach for an experimental nonlinear aerodynamic test rig, a twin rotor multi-input-multi-output system (TRMS) using genetic algorithms (GA). The dynamic equations of the system in terms of 2 degrees of freedom (2DOF) are developed using Newtonian method. The measurable parameters of the system are measured and others are estimated using physical knowledge of the system. In order to improve the accuracy of the model the estimated parameters are returned using a GA optimization approach. Note that the estimated parameters of the system are utilized as the initial populations of the GA. The performances of the white and grey box models are compared with respect to each other to validate the improvement of the grey box approach. The developed model will be used in a nonlinear model predictive control approach.

[1]  M. Hasan Shaheed,et al.  Performance analysis of 4 types of conjugate gradient algorithms in the nonlinear dynamic modelling of a TRMS using feedforward neural networks , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[2]  Björn Sohlberg,et al.  Hybrid grey box modelling of a pickling process , 2005 .

[3]  Arthur Jutan,et al.  Grey-box modelling and control of chemical processes , 2002 .

[4]  B. Sohlberg,et al.  Estimation of a non-measurable variable by using Grey box modelling , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[5]  Kay Chen Tan,et al.  Evolutionary grey-box modelling for practical systems , 1997 .

[6]  Sten Bay Jørgensen,et al.  Parameter estimation in stochastic grey-box models , 2004, Autom..

[7]  Gérard Dreyfus,et al.  How to Be a Gray Box: The Art of Dynamic Semi-Physical Modeling , 2001 .

[8]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[9]  M. O. Tokhi,et al.  Nonlinear modelling of a twin rotor MIMO system using radial basis function networks , 2000, Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093).

[10]  Wei-Der Chang,et al.  Nonlinear system identification and control using a real-coded genetic algorithm , 2007 .

[11]  Akbar Rahideh,et al.  Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system , 2007 .

[12]  Antonio Barrientos,et al.  Identification of a small unmanned helicopter model using genetic algorithms , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  I.Z.M. Darus,et al.  Parametric modelling of a twin rotor system using genetic algorithms , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..

[14]  Andrew J. Chipperfield,et al.  Dynamic modeling and optimal control of a twin rotor MIMO system , 2000, Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093).

[15]  Jih-Jeng Huang,et al.  Model identification of ARIMA family using genetic algorithms , 2005, Appl. Math. Comput..

[16]  Sten Bay Jørgensen,et al.  A method for systematic improvement of stochastic grey-box models , 2004, Comput. Chem. Eng..

[17]  Gérard Dreyfus,et al.  How to be a gray box: dynamic semi-physical modeling , 2001, Neural Networks.