Buckybot: A Robot Based on the Geometry of a Truncated Icosahedron

This paper introduces Buckybot, a novel mobile platform, and investigates its kinematics and preliminary control algorithms. Buckybot is a ground-based platform whose geometry is based on a truncated icosahedron, i.e. a soccer ball with flattened sides. The platform has 20 passive hexagonal faces on which it can stably rest, and 12 rounded pentagonal faces which can be extended linearly to tilt Buckybot. The symmetric geometry of the robot makes it operational in any configuration which is ideal for a variety of deployment scenarios including throwing or dropping. Buckybot currently locomotes using a semi-static tipping gait to move between adjacent hexagonal faces. In this work, we present the design and low-level control of the Buckybot platform, explore the kinematics associated with Buckybot’s method of locomotion, experimentally characterize tipping, and investigate trajectory planning for this new mobile robot. Results demonstrate effective trajectory planning accounting for plan uncertainty.Copyright © 2014 by ASME