Experimental Realization of a Quantum Pentagonal Lattice

Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL.

[1]  P. Sindzingre,et al.  Nematic order in square lattice frustrated ferromagnets. , 2005, Physical review letters.

[2]  T. Ono,et al.  Cascade of magnetic-field-induced quantum phase transitions in a spin-1/2 triangular-lattice antiferromagnet. , 2008, Physical review letters.

[3]  H. Nojiri,et al.  Crystal Structure and Magnetic Properties of the Verdazyl Biradical m-Ph-V2 Forming a Ferromagnetic Alternating Double Chain , 2013 .

[4]  E. Ressouche,et al.  Magnetic frustration in an iron-based Cairo pentagonal lattice. , 2009, Physical review letters.

[5]  T. Nikuni,et al.  MAGNETIZATION CURVE OF A SQUARE-LATTICE HEISENBERG ANTIFERROMAGNET , 1998 .

[6]  V. Urumov Exact solution of the Ising model on a pentagonal lattice , 2002 .

[7]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[8]  T. Sakakibara,et al.  Unconventional magnetic and thermodynamic properties of S=1/2 spin ladder with ferromagnetic legs. , 2013, Physical Review Letters.

[9]  P. Steinhardt,et al.  Quasicrystals: a new class of ordered structures , 1984 .

[10]  Ueda,et al.  Electronic properties of the Penrose lattice. I. Energy spectrum and wave functions. , 1991, Physical review. B, Condensed matter.

[11]  L. Dubrovinsky,et al.  Erratum: Frustrated pentagonal Cairo lattice in the non-collinear antiferromagnet Bi 4 Fe 5 O 13 F [Phys. Rev. B 87, 024423 (2013)] , 2013 .

[12]  B. M. Fulk MATH , 1992 .

[13]  R. Moessner,et al.  Quantum magnetism on the Cairo pentagonal lattice , 2012, 1201.3079.

[14]  T. Sakakibara,et al.  Fine-Tuning of Magnetic Interactions in Organic Spin Ladders , 2014, 1402.2743.

[15]  M. Isoda,et al.  Frustration-Induced Magnetic Properties of the Spin-1/2 Heisenberg Antiferromagnet on the Cairo Pentagon Lattice , 2014 .

[16]  T. Momoi,et al.  Vector chiral and multipolar orders in the spin- 1 2 frustrated ferromagnetic chain in magnetic field , 2008, 0807.0858.

[17]  M. Isoda,et al.  Magnetization Process of the S=1/2 Heisenberg Antiferromagnet on the Cairo Pentagon Lattice , 2014, 1403.5008.

[18]  R. Kuhn Über Verdazyle und verwandte Stickstoffradikale , 1964 .

[19]  T. Sato,et al.  Pinwheel valence-bond solid and triplet excitations in the two-dimensional deformed kagome lattice , 2010, 1007.3625.

[20]  Mitsutaka Okumura,et al.  A general algorithm for calculation of Heisenberg exchange integrals J in multispin systems , 2006 .

[21]  H. Yoshida,et al.  Vesignieite BaCu3V2O8(OH)2 as a Candidate Spin-1/2 Kagome Antiferromagnet , 2009, 0901.2237.

[22]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[23]  K. Ozawa,et al.  Direct observation of the energy gap generating the 1 ∕ 3 magnetization plateau in the spin- 1 ∕ 2 trimer chain compound Cu 3 ( P 2 O 6 O D ) 2 by inelastic neutron scattering measurements , 2007 .