Monochromated STEM with a 30 meV-wide, atom-sized electron probe.

The origins and the recent accomplishments of aberration correction in scanning transmission electron microscopy (STEM) are reviewed. It is remembered that the successful correction of imaging aberrations of round lenses owes much to the successful correction of spectrum aberrations achieved in electron energy loss spectrometers 2-3 decades earlier. Two noteworthy examples of the types of STEM investigation that aberration correction has made possible are shown: imaging of single-atom impurities in graphene and analyzing atomic bonding of single atoms by electron energy loss spectroscopy (EELS). Looking towards the future, a new all-magnetic monochromator is described. The monochromator uses several of the principles pioneered in round lens aberration correction, and it employs stabilization schemes that make it immune to variations in the high voltage of the microscope and in the monochromator main prism current. Tests of the monochromator carried out at 60 keV have demonstrated energy resolution as good as 12 meV and monochromated probe size of ∼1.2 Å. These results were obtained in separate experiments, but they indicate that the instrument can perform imaging and EELS with an atom-sized probe <30 meV wide in energy, and that an improvement in energy resolution to 10 meV and beyond should be possible in the future.

[1]  N. Erdman,et al.  Low voltage electron microscopy : principles and applications , 2012 .

[2]  P D Nellist,et al.  Direct Sub-Angstrom Imaging of a Crystal Lattice , 2004, Science.

[3]  Stephen J. Pennycook,et al.  Scanning transmission electron microscopy : imaging and analysis , 2011 .

[4]  H. Rose Advances in Electron Optics , 2003 .

[5]  O. Scherzer Spharische und chromatische Korrektur von Elektronen-Linsen , 1947 .

[6]  Archie Howie Learning From Past Epiphanies, Successes and Disappointments to Anticipate Future Progress in Microscopy , 2012 .

[7]  M. Chisholm,et al.  Scanning transmission electron microscopy: Albert Crewe's vision and beyond. , 2012, Ultramicroscopy.

[8]  K. Suenaga,et al.  Detection of photons emitted from single erbium atoms in energy-dispersive X-ray spectroscopy , 2012, Nature Photonics.

[9]  Ondrej L. Krivanek,et al.  Towards sub-Å electron beams , 1999 .

[10]  M. Isaacson,et al.  A high resolution electron spectrometer for use in transmission scanning electron microscopy. , 1971, The Review of scientific instruments.

[11]  S. Pennycook,et al.  Direct determination of the chemical bonding of individual impurities in graphene. , 2012, Physical review letters.

[12]  M. Chisholm,et al.  Atomic-Resolution STEM at Low Primary Energies , 2011 .

[13]  DrEmma Batson Planning and implementing a worming programme , 2012 .

[14]  C. Ahn,et al.  Parallel detection electron spectrometer using quadrupole lenses , 1987 .

[15]  Aberration correction in the STEM , 2022, Electron Microscopy and Analysis 1997.

[16]  H. Sawada,et al.  STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. , 2009, Journal of electron microscopy.

[17]  Ursel Bangert,et al.  Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. , 2013, Nano letters.

[18]  Jon Orloff,et al.  Handbook of Charged Particle Optics , 1997 .

[19]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[20]  O. Krivanek,et al.  Dedicated STEM for 200 to 40 keV operation , 2011 .

[21]  H. Rose Aberration correction in electron microscopy , 2006, Proceedings of the 2005 Particle Accelerator Conference.

[22]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[23]  Graphene reknits its holes. , 2012, Nano letters.

[24]  Ondrej L. Krivanek,et al.  Single atom identification by energy dispersive x-ray spectroscopy , 2012 .

[25]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[26]  K. Suenaga,et al.  Atom-by-atom spectroscopy at graphene edge , 2010, Nature.

[27]  Terauchi,et al.  Development of a high energy resolution electron energy‐loss spectroscopy microscope , 1999, Journal of microscopy.

[28]  Maximilian Haider,et al.  Aberration correction in a low voltage SEM by a multipole corrector , 1995 .

[29]  Manfred Rühle,et al.  High-Resolution Imaging and Spectrometry of Materials , 2003 .

[30]  O. Scherzer The Theoretical Resolution Limit of the Electron Microscope , 1949 .

[31]  D A Howie,et al.  Electron Microscopy, 1972 , 1973 .

[32]  F. J. García de abajo,et al.  Electron energy-gain spectroscopy , 2008 .

[33]  W. Stickel,et al.  Interaction of 25-keV Electrons with Lattice Vibrations in LiF. Experimental Evidence for Surface Modes of Lattice Vibration , 1966 .

[34]  P. Batson Atomic Resolution Electronic Structure in Silicon-Based Semiconductors , 1996 .

[35]  Andrew Richard. Lupini,et al.  Aberration correction in STEM , 2001 .

[36]  O. Krivanek,et al.  An electron microscope for the aberration-corrected era. , 2008, Ultramicroscopy.

[37]  Q. Ramasse,et al.  Gentle STEM of Single Atoms: Low keV Imaging and Analysis at Ultimate Detection Limits , 2012 .

[38]  P. Hawkes,et al.  Science of Microscopy , 2007 .

[39]  H. Shuman Correction of the second-order aberrations of uniform field magnetic sectors. , 1980, Ultramicroscopy.

[40]  S. Pennycook A Scan Through the History of STEM , 2011 .

[41]  P D Nellist,et al.  Progress in aberration-corrected scanning transmission electron microscopy. , 2001, Journal of electron microscopy.

[42]  Ulrich Dahmen,et al.  Atomic-resolution imaging with a sub-50-pm electron probe. , 2009, Physical review letters.

[43]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[44]  V. Nicolosi,et al.  Gentle STEM: ADF imaging and EELS at low primary energies $ , 2010 .

[45]  O. Scherzer,et al.  Über einige Fehler von Elektronenlinsen , 1936 .

[46]  B. Kraus,et al.  The GIF Quantum, a next generation post-column imaging energy filter , 2010 .

[47]  O. Krivanek,et al.  Developments in EELS instrumentation for spectroscopy and imaging , 1991 .

[48]  H. Sawada,et al.  Achieving 63 pm Resolution in Scanning Transmission Electron Microscope with Spherical Aberration Corrector , 2007 .

[49]  G. Benner,et al.  Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter , 2010 .

[50]  O. Krivanek,et al.  High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.