Simple MAP Inference via Low-Rank Relaxations
暂无分享,去创建一个
[1] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[2] A. Ron,et al. Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..
[3] Alexander I. Barvinok,et al. Problems of distance geometry and convex properties of quadratic maps , 1995, Discret. Comput. Geom..
[4] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[5] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization , 1998 .
[6] Gábor Pataki,et al. On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..
[7] Renato D. C. Monteiro,et al. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..
[8] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[9] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[10] Renato D. C. Monteiro,et al. Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .
[11] Tommi S. Jaakkola,et al. New Outer Bounds on the Marginal Polytope , 2007, NIPS.
[12] John C. Platt,et al. Fast Low-Rank Semidefinite Programming for Embedding and Clustering , 2007, AISTATS.
[13] Tommi S. Jaakkola,et al. Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.
[14] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[15] Alexander M. Rush,et al. On Dual Decomposition and Linear Programming Relaxations for Natural Language Processing , 2010, EMNLP.
[16] Ruslan Salakhutdinov,et al. Practical Large-Scale Optimization for Max-norm Regularization , 2010, NIPS.
[17] Frank Vallentin,et al. The Positive Semidefinite Grothendieck Problem with Rank Constraint , 2009, ICALP.
[18] Vladlen Koltun,et al. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.
[19] Christopher Ré,et al. Parallel stochastic gradient algorithms for large-scale matrix completion , 2013, Mathematical Programming Computation.
[20] Vladlen Koltun,et al. Parameter Learning and Convergent Inference for Dense Random Fields , 2013, ICML.
[21] Christopher D. Manning,et al. Relaxations for inference in restricted Boltzmann machines , 2014, ICLR.