Scalar particle production in a simple Horndeski theory

The scalar particle production through a scalar field nonminimally coupled with geometry is investigated in the context of a spatially homogeneous and isotropic Universe. In this paper, to study the evolution of particle production over time in the case of analytical solutions, we focus on a simple Horndeski theory. We first suppose that the Universe is dominated by a scalar field and derive the energy conservation condition. Then, from the thermodynamic point of view, the macroscopic nonconservation of the scalar field energy-momentum tensor can be explained as an irreversible production of the scalar particles. Based on the explanation, vve obtaw a scalar particle-production rate and the corresponding entropy. Finally, since the Universe, in general, could be regarded as a closed system satisfying the laws of thermodynamics, we naturally impose some thermodynamic constraints on it. The thermodynamic properties of the Universe can provide additional constraints on the simple Homdeski trneory.

[1]  Vijay Singh,et al.  Friedmann Cosmology with Matter Creation in Modified f(R, T) Gravity , 2016 .

[2]  D. Momeni,et al.  Generalized second law of thermodynamics in f(R,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(R,T)$\end{document} , 2015, Astrophysics and Space Science.

[3]  T. Harko,et al.  Gravitational induced particle production through a nonminimal curvature–matter coupling , 2015, 1508.02511.

[4]  Rafael C. Nunes,et al.  Phantom behavior via cosmological creation of particles , 2015, 1503.04113.

[5]  S. Saha,et al.  A third alternative to explain recent observations: Future deceleration , 2014, 1411.0941.

[6]  T. Harko Thermodynamic interpretation of the generalized gravity models with geometry - matter coupling , 2014, 1408.3465.

[7]  T. Harko,et al.  Generalized Curvature-Matter Couplings in Modified Gravity , 2014, Extensions of f(R) Gravity.

[8]  J. Mimoso,et al.  Entropy evolution of universes with initial and final de Sitter eras , 2013, 1302.1972.

[9]  R. Cai,et al.  Thermodynamic laws for generalized f(R) gravity with curvature-matter coupling , 2012 .

[10]  D. Pavón,et al.  Does the entropy of the Universe tend to a maximum? , 2012, 1209.3004.

[11]  Y. Bisabr Modified gravity with a nonminimal gravitational coupling to matter , 2012, 1205.0328.

[12]  S. Basilakos,et al.  Newtonian Perturbations on Models with Matter Creation , 2011, 1105.1027.

[13]  T. Harko Galactic rotation curves in modified gravity with nonminimal coupling between matter and geometry , 2010, 1004.0576.

[14]  O. Bertolami,et al.  Accelerated expansion from a non-minimal gravitational coupling to matter , 2010, 1003.0850.

[15]  G. Smoot,et al.  Entropic accelerating universe , 2010, 1002.4278.

[16]  F. Cyr-Racine,et al.  Reheating in Inflationary Cosmology: Theory and Applications , 2010, 1001.2600.

[17]  J. F. Jesus,et al.  CDM accelerating cosmology as an alternative to ΛCDM model , 2009, 0911.5727.

[18]  O. Bertolami,et al.  Mimicking dark matter through a non-minimal gravitational coupling with matter , 2009, 0906.4757.

[19]  G. Steigman,et al.  An accelerating cosmology without dark energy , 2008, 0812.3912.

[20]  T. Sotiriou,et al.  Modified gravity with R–matter couplings and (non-)geodesic motion , 2008, 0805.1249.

[21]  R. Brustein,et al.  Wald's entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling , 2007, 0712.3206.

[22]  S Schlamminger,et al.  Test of the equivalence principle using a rotating torsion balance. , 2007, Physical review letters.

[23]  V. Faraoni Viability criterion for modified gravity with an extra force , 2007, 0710.1291.

[24]  E. Linder The dynamics of quintessence, the quintessence of dynamics , 2007, 0704.2064.

[25]  C. Boehmer,et al.  Extra force in f(R) modified theories of gravity , 2007, 0704.1733.

[26]  O. Bertolami,et al.  Dark energy–dark matter interaction and putative violation of the equivalence principle from the Abell cluster A586 , 2007, astro-ph/0703462.

[27]  S. Odintsov,et al.  Dark energy dominance and cosmic acceleration in first-order formalism , 2005, gr-qc/0504057.

[28]  S. Nojiri,et al.  Gravity assisted dark energy dominance and cosmic acceleration , 2004, astro-ph/0403622.

[29]  L. Randall,et al.  Dynamical approach to the cosmological constant. , 2003, Physical review letters.

[30]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[31]  T. Damour,et al.  Violations of the equivalence principle in a dilaton-runaway scenario , 2002, hep-th/0205111.

[32]  C. Will The Confrontation between General Relativity and Experiment , 2005, Living reviews in relativity.

[33]  D. Ahluwalia,et al.  Probing Quantum Violations of the Equivalence Principle , 2000, gr-qc/0006022.

[34]  W. Zimdahl Cosmological particle production, causal thermodynamics, and inflationary expansion , 1999, astro-ph/9910483.

[35]  L. Amendola Coupled Quintessence , 1999, astro-ph/9908023.

[36]  C. Baccigalupi,et al.  Extended quintessence , 1999, Physical Review D.

[37]  S. Rey,et al.  LETTER TO THE EDITOR: Cosmic holography+Cosmic holography , 1999, hep-th/9902173.

[38]  P. Peebles,et al.  Quintessential inflation , 1998, astro-ph/9810509.

[39]  P. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1997, astro-ph/9708069.

[40]  R. Maartens,et al.  Inflationary cosmology and thermodynamics , 1997, astro-ph/9703137.

[41]  T. Damour Testing the equivalence principle: why and how? , 1996, gr-qc/9606080.

[42]  L. Abramo,et al.  Inflationary models driven by adiabatic matter creation , 1996, gr-qc/9606064.

[43]  J. Pantaleone,et al.  Possible violation of the equivalence principle by neutrinos. , 1995, Physical review. D, Particles and fields.

[44]  L. Abramo,et al.  FRW-type cosmologies with adiabatic matter creation. , 1995, Physical review. D, Particles and fields.

[45]  R. Wald,et al.  Black hole entropy is Noether charge. , 1993, Physical review. D, Particles and fields.

[46]  A. Germanò,et al.  On the equivalence of bulk viscosity and matter creation , 1992 .

[47]  M. Calvao,et al.  On the thermodynamics of matter creation in cosmology , 1992 .

[48]  Brandenberger,et al.  Particle production during out-of-equilibrium phase transitions. , 1990, Physical review. D, Particles and fields.

[49]  I. Prigogine,et al.  Thermodynamics and cosmology , 1989 .

[50]  Gasperini Testing the principle of equivalence with neutrino oscillations. , 1988, Physical review. D, Particles and fields.

[51]  I. Prigogine,et al.  Thermodynamics of cosmological matter creation. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Ford Gravitational particle creation and inflation. , 1987, Physical review. D, Particles and fields.

[53]  I. Prigogine,et al.  Entropy, matter, and cosmology. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[54]  L. Parker,et al.  Asymmetric creation of matter and antimatter in the expanding universe , 1979 .

[55]  F. Englert,et al.  The Creation of the Universe as a Quantum Phenomenon , 1978 .

[56]  L. Parker,et al.  Erratum: Anisotropy damping through quantum effects in the early universe , 1978 .

[57]  L. Parker,et al.  Anisotropy damping through quantum effects in the early universe , 1978 .

[58]  S. Hawking,et al.  Cosmological Event Horizons, Thermodynamics, and Particle Creation , 1977 .

[59]  V. Mostepanenko,et al.  Particle creation from vacuum in homogeneous isotropic models of the Universe , 1976 .

[60]  L. Parker,et al.  Conformal energy-momentum tensor in curved spacetime: Adiabatic regularization and renormalization , 1974 .

[61]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .

[62]  E. P. Tryon Is the Universe a Vacuum Fluctuation? , 1973, Nature.

[63]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[64]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[65]  L. Parker,et al.  QUANTIZED FIELDS AND PARTICLE CREATION IN EXPANDING UNIVERSES. II. , 1969 .

[66]  R. Sexl,et al.  Production of particles by gravitational fields , 1969 .

[67]  L. Parker,et al.  Particle Creation in Expanding Universes , 1968 .

[68]  Fred Hoyle,et al.  A New Model for the Expanding Universe , 1948 .

[69]  T. Gold,et al.  The Steady-State Theory of the Expanding Universe , 1948 .

[70]  P. Dirac The Cosmological Constants , 1937, Nature.

[71]  W. Marsden I and J , 2012 .

[72]  M. Snir,et al.  Report No , 2005 .

[73]  S. Hawking Particle creation by black holes , 1975 .