Tunable Replica Bits for Dynamic Variation Tolerance in 8T SRAM Arrays
暂无分享,去创建一个
Keith A. Bowman | James Tschanz | Vivek De | Shih-Lien Lu | Arijit Raychowdhury | Tanay Karnik | Muhammad M. Khellah | Bibiche M. Geuskens
[1] Saurabh Dighe,et al. Adaptive Frequency and Biasing Techniques for Tolerance to Dynamic Temperature-Voltage Variations and Aging , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[2] A.P. Chandrakasan,et al. A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy , 2008, IEEE Journal of Solid-State Circuits.
[3] T. Rahal-Arabi,et al. On-die droop detector for analog sensing of power supply noise , 2004, IEEE Journal of Solid-State Circuits.
[4] K. Ishibashi,et al. A 65-nm SoC Embedded 6T-SRAM Designed for Manufacturability With Read and Write Operation Stabilizing Circuits , 2007, IEEE Journal of Solid-State Circuits.
[5] Paolo A. Aseron,et al. A 45 nm Resilient Microprocessor Core for Dynamic Variation Tolerance , 2011, IEEE Journal of Solid-State Circuits.
[6] S. Naffziger,et al. Power and temperature control on a 90-nm Itanium family processor , 2006, IEEE Journal of Solid-State Circuits.
[7] S. Naffziger,et al. A 90-nm variable frequency clock system for a power-managed itanium architecture processor , 2006, IEEE Journal of Solid-State Circuits.
[8] K.A. Bowman,et al. Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance , 2009, IEEE Journal of Solid-State Circuits.
[9] N. Kurd,et al. Next Generation Intel¯ Core™ Micro-Architecture (Nehalem) Clocking , 2009, IEEE Journal of Solid-State Circuits.
[10] H. Fujiwara,et al. An Area-Conscious Low-Voltage-Oriented 8T-SRAM Design under DVS Environment , 2007, 2007 IEEE Symposium on VLSI Circuits.
[11] Baker Mohammad,et al. Cache Design for Low Power and High Yield , 2008, ISQED 2008.
[12] J. Tschanz,et al. Tunable replica circuits and adaptive voltage-frequency techniques for dynamic voltage, temperature, and aging variation tolerance , 2009, 2009 Symposium on VLSI Circuits.
[13] H. Yamauchi,et al. A Stable 2-Port SRAM Cell Design Against Simultaneously Read/Write-Disturbed Accesses , 2008, IEEE Journal of Solid-State Circuits.
[14] David Blaauw,et al. A Sub-200mV 6T SRAM in 0.13μm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[15] Leland Chang,et al. A 5.3GHz 8T-SRAM with Operation Down to 0.41V in 65nm CMOS , 2007, 2007 IEEE Symposium on VLSI Circuits.
[16] T. Sasaki,et al. A 0.7 V Single-Supply SRAM With 0.495 $\mu$m$^{2}$ Cell in 65 nm Technology Utilizing Self-Write-Back Sense Amplifier and Cascaded Bit Line Scheme , 2009, IEEE Journal of Solid-State Circuits.
[17] N. Vallepalli,et al. A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply , 2005, IEEE Journal of Solid-State Circuits.
[18] Keith A. Bowman,et al. PVT-and-aging adaptive wordline boosting for 8T SRAM power reduction , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).
[19] R. Chau,et al. A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.
[20] R. Wong,et al. Scaling of 32nm low power SRAM with high-K metal gate , 2008, 2008 IEEE International Electron Devices Meeting.
[21] Anna W. Topol,et al. Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..
[22] Jiajing Wang,et al. Techniques to Extend Canary-Based Standby $V_{DD}$ Scaling for SRAMs to 45 nm and Beyond , 2008, IEEE Journal of Solid-State Circuits.
[23] Kaushik Roy,et al. A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[24] Rajesh Kumar,et al. A family of 45nm IA processors , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[25] Koji Nii,et al. A 45-nm Bulk CMOS Embedded SRAM With Improved Immunity Against Process and Temperature Variations , 2008, IEEE Journal of Solid-State Circuits.
[26] Y.H. Chen,et al. A 0.6V 45nm adaptive dual-rail SRAM compiler circuit design for lower VDD_min VLSIs , 2008, 2008 IEEE Symposium on VLSI Circuits.
[27] Seung-Ho Song,et al. Implementation of low-voltage static RAM with enhanced data stability and circuit speed , 2009, Microelectron. J..
[28] C. Radens,et al. A Sub-600-mV, Fluctuation Tolerant 65-nm CMOS SRAM Array With Dynamic Cell Biasing , 2008, IEEE Journal of Solid-State Circuits.