Source localization using a sparse representation framework to achieve superresolution

We present a source localization approach using resampling within a sparse representation framework. In particular, the amplitude and phase information of the sparse solution is considered holistically to estimate the direction-of-arrival (DOA), where a resampling technique is developed to determine which information will give a more precise estimation. The simulation results confirm the efficacy of our proposed method.

[1]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[2]  Edmund Y. Lam,et al.  Superresolution reconstruction using nonlinear gradient-based regularization , 2009, Multidimens. Syst. Signal Process..

[3]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[4]  Stanley H. Chan,et al.  Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography. , 2008, Optics express.

[5]  Jie Chen,et al.  Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.

[6]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[7]  Edmund Y Lam,et al.  Maximum a posteriori blind image deconvolution with Huber-Markov random-field regularization. , 2009, Optics letters.

[8]  Edmund Y. Lam,et al.  Super-resolution reconstruction in a computational compound-eye imaging system , 2007, Multidimens. Syst. Signal Process..

[9]  Nanyan Y. Wang,et al.  A new DOA estimation technique based on subarray beamforming , 2006, IEEE Transactions on Signal Processing.

[10]  Anthony J. Weiss,et al.  Direction finding for diversely polarized signals using polynomial rooting , 1993, IEEE Trans. Signal Process..

[11]  Joel A. Tropp,et al.  Topics in sparse approximation , 2004 .

[12]  Jean-Jacques Fuchs,et al.  Detection and estimation of superimposed signals , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[13]  Edmund Y. Lam,et al.  Efficient On-Demand Image Transmission in Visual Sensor Networks , 2007, EURASIP J. Adv. Signal Process..

[14]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[15]  Yuanqing Li,et al.  Probability estimation for recoverability analysis of blind source separation based on sparse representation , 2006, IEEE Transactions on Information Theory.

[16]  Jean-Jacques Fuchs,et al.  Application of the Global Matched Filter to Stap Data an Efficient Algorithmic Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[17]  Edmund Y. Lam,et al.  Wireless sensor networks scheduling for full angle coverage , 2009, Multidimens. Syst. Signal Process..

[18]  Edmund Y. Lam,et al.  Blind Bi-Level Image Restoration With Iterated Quadratic Programming , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Abdefihak M. Zoubir,et al.  Bootstrap Methods and Applications , 2007, IEEE Signal Processing Magazine.

[20]  Jean Pierre Delmas,et al.  Stochastic Cramer-Rao bound for direction estimation of non-circular signals in unknown noise fields , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[21]  Jean-Jacques Fuchs,et al.  On the application of the global matched filter to DOA estimation with uniform circular arrays , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[22]  Hsien-Tsai Wu,et al.  Source number estimators using transformed Gerschgorin radii , 1995, IEEE Trans. Signal Process..

[23]  K. Kreutz-Delgado,et al.  Efficient backward elimination algorithm for sparse signal representation using overcomplete dictionaries , 2002, IEEE Signal Processing Letters.

[24]  Erik G. Larsson,et al.  Stochastic Cramer-Rao bound for direction estimation in unknown noise fields , 2002 .

[25]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[26]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[27]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..