A greedy algorithm to construct covering arrays using a graph representation

Abstract Combinatorial interaction testing is an effective method to assess the functionality of hardware and software components, and usually, covering arrays (CAs) and mixed covering arrays (MCAs) are used as test-suites. The main contributions of this work are the development of a graph representation for the problem of constructing CAs and MCAs, and the creation of a competitive greedy algorithm to solve the construction problem of CAs and MCAs in the graph domain. The representation that we introduce in this paper is denoted as Coverage in Nodes (CN) and our algorithm is called Graph Based Greedy Algorithm (GBGA). We have compared the performance of GBGA with other state-of-the-art greedy algorithm regarding the construction of CAs and MCAs. It is remarkable to note that we were able to define 13 new upper bounds for MCAs.

[1]  Hareton K. N. Leung,et al.  A survey of combinatorial testing , 2011, CSUR.

[2]  Yu Lei,et al.  In-parameter-order: a test generation strategy for pairwise testing , 1998, Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No.98EX231).

[3]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[4]  Charles J. Colbourn,et al.  A density-based greedy algorithm for higher strength covering arrays , 2009 .

[5]  Vicente Hernández,et al.  New bounds for ternary covering arrays using a parallel simulated annealing , 2012 .

[6]  Tatsuhiro Tsuchiya,et al.  Using artificial life techniques to generate test cases for combinatorial testing , 2004, Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004..

[7]  Steven David Prestwich,et al.  Constraint Models for the Covering Test Problem , 2006, Constraints.

[8]  K. A. Bush Orthogonal Arrays of Index Unity , 1952 .

[9]  Mario Piattini,et al.  PROW: A Pairwise algorithm with constRaints, Order and Weight , 2015, J. Syst. Softw..

[10]  José Torres-Jiménez,et al.  Simulated Annealing for constructing binary covering arrays of variable strength , 2010, IEEE Congress on Evolutionary Computation.

[11]  Jun Yan,et al.  Generating combinatorial test suite using combinatorial optimization , 2014, J. Syst. Softw..

[12]  A. Jefferson Offutt,et al.  Combination testing strategies: a survey , 2005, Softw. Test. Verification Reliab..

[13]  Donald T. Tang,et al.  Exhaustive Test Pattern Generation with Constant Weight Vectors , 1983, IEEE Transactions on Computers.

[14]  Janez Konc,et al.  An improved branch and bound algorithm for the maximum clique problem , 2007 .

[15]  Siddhartha R. Dalal,et al.  The Automatic Efficient Test Generator (AETG) system , 1994, Proceedings of 1994 IEEE International Symposium on Software Reliability Engineering.

[16]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[17]  Armin Biere,et al.  Greedy combinatorial test case generation using unsatisfiable cores , 2016, 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE).

[18]  Charles J. Colbourn,et al.  Covering arrays from cyclotomy , 2010, Des. Codes Cryptogr..

[19]  Pablo San Segundo,et al.  An exact bit-parallel algorithm for the maximum clique problem , 2011, Comput. Oper. Res..

[20]  D. Richard Kuhn,et al.  Tower of covering arrays , 2015 .

[21]  A. Hartman Software and Hardware Testing Using Combinatorial Covering Suites , 2005 .

[22]  Changhai Nie,et al.  A Discrete Particle Swarm Optimization for Covering Array Generation , 2015, IEEE Transactions on Evolutionary Computation.

[23]  Charles J. Colbourn,et al.  The density algorithm for pairwise interaction testing , 2007, Softw. Test. Verification Reliab..

[24]  Dennis Shasha,et al.  Products of mixed covering arrays of strength two , 2006 .

[25]  Qinghua Wu,et al.  A review on algorithms for maximum clique problems , 2015, Eur. J. Oper. Res..

[26]  José Torres-Jiménez,et al.  Construction of non-isomorphic covering arrays , 2016, Discret. Math. Algorithms Appl..

[27]  Jun Yan,et al.  Backtracking Algorithms and Search Heuristics to Generate Test Suites for Combinatorial Testing , 2006, 30th Annual International Computer Software and Applications Conference (COMPSAC'06).

[28]  D. Richard Kuhn,et al.  Combinatorial Testing for Software: an Adaptation of Design of Experiments , 2013 .

[29]  Joel H. Spencer,et al.  Families of k-independent sets , 1973, Discret. Math..

[30]  Etsuji Tomita,et al.  An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique , 2003, DMTCS.

[31]  Robert L. Probert,et al.  Formulation of the Interaction Test Coverage Problem as an Integer Program , 2002, TestCom.

[32]  Angelo Gargantini,et al.  T‐wise combinatorial interaction test suites construction based on coverage inheritance , 2012, Softw. Test. Verification Reliab..

[33]  José Torres-Jiménez,et al.  A New Backtracking Algorithm for Constructing Binary Covering Arrays of Variable Strength , 2009, MICAI.

[34]  Kari J. Nurmela,et al.  Upper bounds for covering arrays by tabu search , 2004, Discret. Appl. Math..

[35]  Bestoun S. Ahmed,et al.  Achievement of minimized combinatorial test suite for configuration-aware software functional testing using the Cuckoo Search algorithm , 2015, Inf. Softw. Technol..

[36]  G. Katona Two applications (for search theory and truth functions) of Sperner type theorems , 1973 .

[37]  Yu Lei,et al.  Refining the In-Parameter-Order Strategy for Constructing Covering Arrays , 2008, Journal of research of the National Institute of Standards and Technology.

[38]  Jeff Yu Lei,et al.  IPOG: A General Strategy for T-Way Software Testing , 2007, 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS'07).