Exponential stability for a one‐dimensional compressible viscous micropolar fluid

In this paper, we consider one-dimensional compressible viscous and heat-conducting micropolar fluid, being in a thermodynamical sense perfect and polytropic. The homogenous boundary conditions for velocity, microrotation, and temperature are introduced. This problem has a global solution with a priori estimates independent of time; with the help of this result, we first prove the exponential stability of solution in (H1(0,1))4, and then we establish the global existence and exponential stability of solutions in (H2(0,1))4 under the suitable assumptions for initial data. The results in this paper improve those previously related results. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Ivan Dražić,et al.  3-D flow of a compressible viscous micropolar fluid with spherical symmetry: uniqueness of a generalized solution , 2014 .

[2]  Nermina Mujaković,et al.  One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem , 1998 .

[3]  E. Feireisl,et al.  On the Long-Time Behaviour of Solutions to the Navier–Stokes–Fourier System with a Time-Dependent Driving Force , 2007 .

[4]  Alexander Zlotnik,et al.  Lyapunov Functional Method for 1D Radiative and Reactive Viscous Gas Dynamics , 2005 .

[5]  Yinsuo Jia,et al.  Superconvergence patch recovery for the gradient of the tensor-product linear triangular prism element , 2014 .

[6]  Yuming Qin,et al.  The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity , 2012 .

[7]  B. Guo,et al.  Asymptotic Behavior of the Solution to the System for a Viscous Reactive Gas , 1999 .

[8]  Nermina Mujaković 1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditions for temperature: A local existence theorem , 2012 .

[9]  Nermina Mujaković,et al.  Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a global existence theorem , 2009 .

[10]  Nermina Mujaković,et al.  CONVERGENT FINITE DIFFERENCE SCHEME FOR 1D FLOW OF COMPRESSIBLE MICROPOLAR FLUID , 2014 .

[11]  Nermina Mujaković,et al.  Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a local existence theorem , 2007 .

[12]  H. Yashima,et al.  Unicité de la solution de l'équation monodimensionnelle ou à symétrie sphérique d'un gaz visqueux et calorifère , 1993 .

[13]  Nermina Mujaković One-Dimensional Flow of a Compressible Viscous Micropolar Fluid: Stabilization of the Solution , 2005 .

[14]  Nermina Mujaković,et al.  The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature , 2014 .

[15]  Peihao Zhao,et al.  Existence and multiplicity of solutions for nonlocal p(x)-Laplacian equations with nonlinear Neumann boundary conditions , 2012 .

[16]  Gui-Qiang G. Chen Global solutions to the compressible Navier-Stokes equations for a reacting mixture , 1992 .

[17]  N. Mujakovic GLOBAL IN TIME ESTIMATES FOR ONE-DIMENSIONAL COMPRESSIBLE VISCOUS MICROPOLAR FLUID MODEL , 2005 .

[18]  David Hoff,et al.  Global solutions of the compressible navier-stokes equations with larger discontinuous initial data , 2000 .

[19]  S. Kawashima,et al.  On the equations of one-dimensional motion of compressible viscous fluids , 1983 .