A Robust Reconstruction for Unstructured WENO Schemes

The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with distorted local mesh geometries or degenerate cases when the mesh quality varies for complex domain geometry. In this paper, we combine two different WENO reconstruction approaches to achieve a robust unstructured finite volume WENO reconstruction on complex mesh geometries. Numerical examples including both scalar and system cases are given to demonstrate stability and accuracy of the scheme.

[1]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[2]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[3]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[4]  Yong-Tao Zhang,et al.  Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes , 2008 .

[5]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[6]  Wai-Sun Don,et al.  High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws , 2011, J. Comput. Phys..

[7]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[8]  Chi-Wang Shu,et al.  A New Smoothness Indicator for the WENO Schemes and Its Effect on the Convergence to Steady State Solutions , 2007, J. Sci. Comput..

[9]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[10]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[11]  L Preziosi,et al.  Percolation, morphogenesis, and burgers dynamics in blood vessels formation. , 2003, Physical review letters.

[12]  Francis Filbet,et al.  Approximation of Hyperbolic Models for Chemosensitive Movement , 2005, SIAM J. Sci. Comput..

[13]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[14]  Antonio Marquina,et al.  Power ENO methods: a fifth-order accurate weighted power ENO method , 2004 .

[15]  H. Poincaré,et al.  Percolation ? , 1982 .

[16]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[17]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[18]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[19]  Nail K. Yamaleev,et al.  Boundary closures for fourth-order energy stable weighted essentially non-oscillatory finite-difference schemes , 2011, J. Comput. Phys..

[20]  Jianxian Qiu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO-Type Limiters: Three-Dimensional Unstructured Meshes , 2012 .

[21]  Colin B. Macdonald,et al.  On the Linear Stability of the Fifth-Order WENO Discretization , 2011, J. Sci. Comput..

[22]  Jun Zhu,et al.  Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes , 2009, J. Sci. Comput..

[23]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[24]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[25]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[26]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[27]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[28]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .