Is 2k-Conjecture Valid for Finite Volume Methods?
暂无分享,去创建一个
[1] Zhiqiang Cai,et al. On the finite volume element method , 1990 .
[2] Pekka Neittaanmäki,et al. On superconvergence techniques , 1987 .
[3] Zhimin Zhang,et al. FINITE VOLUME SUPERCONVERGENCE APPROXIMATION FOR ONE-DIMESIONAL SINGULARLY PERTURBED PROBLEMS * , 2013 .
[4] Long Chen. FINITE VOLUME METHODS , 2011 .
[5] Tao Lin,et al. On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..
[6] Zhimin Zhang,et al. A Family of Finite Volume Schemes of Arbitrary Order on Rectangular Meshes , 2014, J. Sci. Comput..
[7] Yuesheng Xu,et al. Higher-order finite volume methods for elliptic boundary value problems , 2012, Adv. Comput. Math..
[8] J. J. Douglas,et al. Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .
[9] Qingsong Zou,et al. Hierarchical error estimates for finite volume approximation solution of elliptic equations , 2010 .
[10] Endre Süli. Convergence of finite volume schemes for Poisson's equation on nonuniform meshes , 1991 .
[11] Michael Plexousakis,et al. On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems , 2004, SIAM J. Numer. Anal..
[12] Chuanmiao Chen,et al. The highest order superconvergence for bi-k degree rectangular elements at nodes: A proof of 2k-conjecture , 2012, Math. Comput..
[13] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[14] T. Barth,et al. Finite Volume Methods: Foundation and Analysis , 2004 .
[15] Ivo Babuška,et al. Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .
[16] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[17] Vidar Thomée,et al. High order local approximations to derivatives in the finite element method , 1977 .
[18] Jim Douglas,et al. Development and Analysis of Higher Order Finite Volume Methods over Rectangles for Elliptic Equations , 2003, Adv. Comput. Math..
[19] Philippe Emonot. Méthodes de volumes éléments finis : applications aux équations de Navier Stokes et résultats de convergence , 1992 .
[20] D. Rose,et al. Some errors estimates for the box method , 1987 .
[21] Waixiang Cao,et al. Superconvergence of Any Order Finite Volume Schemes for 1D General Elliptic Equations , 2013, J. Sci. Comput..
[22] Long Chen,et al. A New Class of High Order Finite Volume Methods for Second Order Elliptic Equations , 2010, SIAM J. Numer. Anal..
[23] J. Bramble,et al. Higher order local accuracy by averaging in the finite element method , 1977 .
[24] Ian H. Sloan,et al. Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .
[25] Jinchao Xu,et al. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations , 2009, Numerische Mathematik.
[26] Junliang Lv,et al. L2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes , 2012, Adv. Comput. Math..
[27] G. Burton. Sobolev Spaces , 2013 .