Is 2k-Conjecture Valid for Finite Volume Methods?

This paper is concerned with superconvergence properties of a class of finite volume methods of arbitrary order over rectangular meshes. Our main result is to prove the 2k-conjecture: at each vertex of the underlying rectangular mesh, the bi-$k$ degree finite volume solution approximates the exact solution with an order $ O(h^{2k})$, where $h$ is the mesh size. As byproducts, superconvergence properties for finite volume discretization errors at Lobatto and Gauss points are also obtained. All theoretical findings are confirmed by numerical experiments.

[1]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[2]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[3]  Zhimin Zhang,et al.  FINITE VOLUME SUPERCONVERGENCE APPROXIMATION FOR ONE-DIMESIONAL SINGULARLY PERTURBED PROBLEMS * , 2013 .

[4]  Long Chen FINITE VOLUME METHODS , 2011 .

[5]  Tao Lin,et al.  On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..

[6]  Zhimin Zhang,et al.  A Family of Finite Volume Schemes of Arbitrary Order on Rectangular Meshes , 2014, J. Sci. Comput..

[7]  Yuesheng Xu,et al.  Higher-order finite volume methods for elliptic boundary value problems , 2012, Adv. Comput. Math..

[8]  J. J. Douglas,et al.  Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .

[9]  Qingsong Zou,et al.  Hierarchical error estimates for finite volume approximation solution of elliptic equations , 2010 .

[10]  Endre Süli Convergence of finite volume schemes for Poisson's equation on nonuniform meshes , 1991 .

[11]  Michael Plexousakis,et al.  On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems , 2004, SIAM J. Numer. Anal..

[12]  Chuanmiao Chen,et al.  The highest order superconvergence for bi-k degree rectangular elements at nodes: A proof of 2k-conjecture , 2012, Math. Comput..

[13]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[14]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .

[15]  Ivo Babuška,et al.  Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .

[16]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[17]  Vidar Thomée,et al.  High order local approximations to derivatives in the finite element method , 1977 .

[18]  Jim Douglas,et al.  Development and Analysis of Higher Order Finite Volume Methods over Rectangles for Elliptic Equations , 2003, Adv. Comput. Math..

[19]  Philippe Emonot Méthodes de volumes éléments finis : applications aux équations de Navier Stokes et résultats de convergence , 1992 .

[20]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[21]  Waixiang Cao,et al.  Superconvergence of Any Order Finite Volume Schemes for 1D General Elliptic Equations , 2013, J. Sci. Comput..

[22]  Long Chen,et al.  A New Class of High Order Finite Volume Methods for Second Order Elliptic Equations , 2010, SIAM J. Numer. Anal..

[23]  J. Bramble,et al.  Higher order local accuracy by averaging in the finite element method , 1977 .

[24]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[25]  Jinchao Xu,et al.  Analysis of linear and quadratic simplicial finite volume methods for elliptic equations , 2009, Numerische Mathematik.

[26]  Junliang Lv,et al.  L2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes , 2012, Adv. Comput. Math..

[27]  G. Burton Sobolev Spaces , 2013 .