Open Quantum Random Walks: Reducibility, Period, Ergodic Properties

We study the analogues of irreducibility, period, and communicating classes for open quantum random walks, as defined in (J Stat Phys 147(4):832–852, 2012). We recover results similar to the standard ones for Markov chains, in terms of ergodic behaviour, decomposition into irreducible subsystems, and characterization of invariant states.

[1]  D. Farenick Irreducible positive linear maps on operator algebras , 1996 .

[2]  E. Davies,et al.  Quantum stochastic processes II , 1970 .

[3]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[4]  R. Carbone,et al.  Homogeneous Open Quantum Random Walks on a Lattice , 2014, 1408.1113.

[5]  Stanley Gudder,et al.  Quantum Markov chains , 2008 .

[6]  Central limit theorems for open quantum random walks , 2012 .

[7]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[8]  A. Ekert,et al.  Decoherence-assisted transport in quantum networks , 2014, 1401.6660.

[9]  Francesco Petruccione,et al.  Efficiency of open quantum walk implementation of dissipative quantum computing algorithms , 2012, Quantum Inf. Process..

[10]  C. Pellegrini Continuous Time Open Quantum Random Walks and Non-Markovian Lindblad Master Equations , 2014 .

[11]  Central Limit Theorems for Open Quantum Random Walks and Quantum Measurement Records , 2012, 1206.1472.

[12]  A Coherent Approach to Recurrence and Transience for Quantum Markov Operators , 2012 .

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  R. Schrader Perron-Frobenius Theory for Positive Maps on Trace Ideals , 2000, math-ph/0007020.

[15]  E. B. Davies Quantum theory of open systems , 1976 .

[16]  B. Russo,et al.  A note on unitary operators in $C\sp{\ast}$-algebras , 1966 .

[17]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[18]  B. Baumgartner,et al.  The structures of state space concerning Quantum Dynamical Semigroups , 2011, 1101.3914.

[19]  Franco Fagnola,et al.  Irreducible and periodic positive maps , 2009 .

[20]  Maurizio Verri,et al.  Long-time asymptotic properties of dynamical semigroups onW*-algebras , 1982 .

[21]  F. Petruccione,et al.  Open Quantum Random Walks , 2012, 1402.3253.

[22]  U. Groh The peripheral point spectrum of schwarz operators onC*-algebras , 1981 .

[23]  E. Davies,et al.  Quantum stochastic processes , 1969 .

[24]  Sergio Albeverio,et al.  Frobenius theory for positive maps of von Neumann algebras , 1978 .

[25]  Veronica Umanità,et al.  Classification and decomposition of Quantum Markov Semigroups , 2006 .

[26]  R. Høegh-Krohn,et al.  Spectral Properties of Positive Maps on C*‐Algebras , 1978 .

[27]  A. Frigerio Quantum dynamical semigroups and approach to equilibrium , 1977 .

[28]  A Perron-Frobenius type theorem for positive linear maps on $C^ast $-algebras , 1979 .

[29]  A pathwise ergodic theorem for quantum trajectories , 2004, quant-ph/0406213.