Accelerated Regularized Newton Methods for Minimizing Composite Convex Functions
暂无分享,去创建一个
[1] Daniel P. Robinson,et al. A trust region algorithm with a worst-case iteration complexity of O(ϵ-3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{docume , 2016, Mathematical Programming.
[2] Nicholas I. M. Gould,et al. Universal regularization methods - varying the power, the smoothness and the accuracy , 2018, 1811.07057.
[3] Yurii Nesterov,et al. Cubic regularization of Newton method and its global performance , 2006, Math. Program..
[4] S. Gratton,et al. A line-search algorithm inspired by the adaptive cubic regularization framework , with a worst-case complexity O ( − 3 / 2 ) , 2017 .
[5] José Mario Martínez,et al. On High-order Model Regularization for Constrained Optimization , 2017, SIAM J. Optim..
[6] José Mario Martínez,et al. Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization , 2017, J. Glob. Optim..
[7] Yurii Nesterov,et al. Regularized Newton Methods for Minimizing Functions with Hölder Continuous Hessians , 2017, SIAM J. Optim..
[8] J. Dussault. ARCq: a new Adaptive Regularization by Cubics variant , 2016 .
[9] Yurii Nesterov,et al. Gradient methods for minimizing composite functions , 2012, Mathematical Programming.
[10] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[11] Yurii Nesterov,et al. Universal gradient methods for convex optimization problems , 2015, Math. Program..
[12] José Mario Martínez,et al. The Use of Quadratic Regularization with a Cubic Descent Condition for Unconstrained Optimization , 2017, SIAM J. Optim..
[13] Yurii Nesterov,et al. Accelerating the cubic regularization of Newton’s method on convex problems , 2005, Math. Program..
[14] Nicholas I. M. Gould,et al. Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity , 2011, Math. Program..