Accelerated Regularized Newton Methods for Minimizing Composite Convex Functions

In this paper, we study accelerated Regularized Newton Methods for minimizing objectives formed as a sum of two functions: one is convex and twice differentiable with Holder-continuous Hessian, and the other is a simple closed convex function. For the case in which the Holder parameter $\nu \in [0,1]$ is known, we propose methods that make at most $\cal {O}\left(\frac {1} {\epsilon^{1/(2+\nu)}}\right)$ iterations to reduce the funcitonal residual below a given precision $\epsilon > 0$. For the general case, in which the $\nu$ is not known, we proposeo a universal method that ensures the same precision in at most $\cal{O} \left(\frac {1} {\epsilon^{2/[3(1+\nu)]}}\right)$ iterations.

[1]  Daniel P. Robinson,et al.  A trust region algorithm with a worst-case iteration complexity of O(ϵ-3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{docume , 2016, Mathematical Programming.

[2]  Nicholas I. M. Gould,et al.  Universal regularization methods - varying the power, the smoothness and the accuracy , 2018, 1811.07057.

[3]  Yurii Nesterov,et al.  Cubic regularization of Newton method and its global performance , 2006, Math. Program..

[4]  S. Gratton,et al.  A line-search algorithm inspired by the adaptive cubic regularization framework , with a worst-case complexity O ( − 3 / 2 ) , 2017 .

[5]  José Mario Martínez,et al.  On High-order Model Regularization for Constrained Optimization , 2017, SIAM J. Optim..

[6]  José Mario Martínez,et al.  Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization , 2017, J. Glob. Optim..

[7]  Yurii Nesterov,et al.  Regularized Newton Methods for Minimizing Functions with Hölder Continuous Hessians , 2017, SIAM J. Optim..

[8]  J. Dussault ARCq: a new Adaptive Regularization by Cubics variant , 2016 .

[9]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[10]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[11]  Yurii Nesterov,et al.  Universal gradient methods for convex optimization problems , 2015, Math. Program..

[12]  José Mario Martínez,et al.  The Use of Quadratic Regularization with a Cubic Descent Condition for Unconstrained Optimization , 2017, SIAM J. Optim..

[13]  Yurii Nesterov,et al.  Accelerating the cubic regularization of Newton’s method on convex problems , 2005, Math. Program..

[14]  Nicholas I. M. Gould,et al.  Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity , 2011, Math. Program..