Numerical method for optimal control problems governed by nonlinear hyperbolic systems of PDEs

We develop a numerical method for the solution to linear adjoint equations arising, for example, in optimization problems governed by hyperbolic systems of nonlinear conservation and balance laws in one space dimension. Formally, the solution requires one to numerically solve the hyperbolic system forward in time and a corresponding linear adjoint system backward in time. Numerical results for the control problem constrained by either the Euler equations of gas dynamics or isothermal gas dynamics equations are presented. Both smooth and discontinuous prescribed terminal states are considered.

[1]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[2]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[3]  Per Lötstedt,et al.  Nonlinear filters for efficient shock computation , 1989 .

[4]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[5]  Peter Spellucci,et al.  Numerische Verfahren der nichtlinearen Optimierung , 1993 .

[6]  A. Bressan,et al.  A variational calculus for discontinuous solutions of systems of conservation laws , 1995 .

[7]  Michael B. Giles,et al.  Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler equations , 1995 .

[8]  A. Bressan,et al.  Shift-differentiability of the flow generated by a conservation law , 1996 .

[9]  M. Sepúlveda,et al.  Convergence Results for the Flux Identification in a Scalar Conservation Law , 1999 .

[10]  D. Serre Systems of conservation laws , 1999 .

[11]  C. SIAMJ.,et al.  CONVERGENCE RESULTS FOR THE FLUX IDENTIFICATION IN A SCALAR CONSERVATION LAW , 1999 .

[12]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[13]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[14]  Stefano Bianchini,et al.  ON THE SHIFT DIFFERENTIABILITY OF THE FLOW GENERATED BY A HYPERBOLIC SYSTEM OF CONSERVATION LAWS , 2000 .

[15]  Michael B. Giles,et al.  Analytic adjoint solutions for the quasi-one-dimensional Euler equations , 2001, Journal of Fluid Mechanics.

[16]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[17]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[18]  S. Ulbrich Optimal control of nonlinear hyperbolic conservation laws with source terms , 2001 .

[19]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[20]  P. LeFloch Hyperbolic Systems of Conservation Laws , 2002 .

[21]  M. Giles,et al.  Adjoint Error Correction for Integral Outputs , 2003 .

[22]  Michael B. Giles,et al.  Discrete Adjoint Approximations with Shocks , 2003 .

[23]  Stefan Ulbrich,et al.  Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws , 2003, Syst. Control. Lett..

[24]  Knut-Andreas Lie,et al.  On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..

[25]  Stefan Ulbrich On the superlinear local convergence of a filter-SQP method , 2004, Math. Program..

[26]  Mathematisches Forschungsinstitut Oberwolfach,et al.  Hyperbolic Conservation Laws , 2004 .

[27]  A. Bressan,et al.  Optimality Conditions for Solutions to Hyperbolic Balance Laws , 2006 .

[28]  A. Kurganov,et al.  On the Reduction of Numerical Dissipation in Central-Upwind Schemes , 2006 .

[29]  Alberto Bressan,et al.  Shift Differentials of Maps in BV Spaces , 2006 .

[30]  E. Zuazua,et al.  AN ALTERNATING DESCENT METHOD FOR THE OPTIMAL CONTROL OF THE INVISCID BURGERS EQUATION IN THE PRESENCE OF SHOCKS , 2008 .

[31]  Stefan Ulbrich,et al.  Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 2: Adjoint Approximations and Extensions , 2010, SIAM J. Numer. Anal..

[32]  Stefan Ulbrich,et al.  Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 1: Linearized Approximations and Linearized Output Functionals , 2010, SIAM J. Numer. Anal..

[33]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[34]  Michael Herty,et al.  Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws , 2012, Comput. Optim. Appl..

[35]  K. P.,et al.  HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .

[36]  Michael Herty,et al.  An Eulerian–Lagrangian method for optimization problems governed by multidimensional nonlinear hyperbolic PDEs , 2014, Comput. Optim. Appl..