Influence of compositional variations on optoelectrical properties of Ge20Sn10Se70−xTex glass system

Abstract. Variations in optical and electrical properties have been investigated by isoelectronic substitution of Te at the cost of Se in the Ge20Sn10Se70  −  xTex (x  =  3, 6, 9, 12, and 15) system. The current study reports linear (i.e., μ, k, Eg) as well as nonlinear (i.e., μ2 and χ3) optical transmission coefficients of as-prepared specimens. An overall increase in nonlinear parameters χ3 and μ2 can be observed with an increase in the Te concentration. High nonlinearity makes these glasses a prominent candidate for optical device applications. Further attempt has been made to observe the variations in conductivity with respect to temperature for amorphous Ge20Sn10Se70  −  xTex (x  =  3, 6, 9, 12, 15) thin films using a two-probe method and hence the band structure and corresponding conduction mechanism have been investigated.

[1]  A. Szekeres,et al.  Evaluation of basic physical parameters of quaternary Ge–Sb-(S,Te) chalcogenide glasses , 2009 .

[2]  J. Tauc,et al.  States in the gap , 1972 .

[3]  Guo-Fu Zhou,et al.  Materials aspects in phase change optical recording , 2001 .

[4]  Bruno Bureau,et al.  Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing , 2011 .

[5]  A. Szekeres,et al.  Compositional dependence of the optical properties of new quaternary chalcogenide glasses of Ge-Sb-(S,Te) system , 2009 .

[6]  Partha P. Banerjee Nonlinear Optics : Theory, Numerical Modeling, and Applications , 2003 .

[7]  R. Kumar,et al.  Effect of Sb addition on linear and non-linear optical properties of amorphous Ge–Se–Sn thin films , 2016 .

[8]  J. Tauc,et al.  Amorphous and liquid semiconductors , 1974 .

[9]  A. Szekeres,et al.  Photo-induced changes of the optical constants of chalcodenide Ge19Sb1Te80 films , 2004, ROMOPTO International Conference on Micro- to Nano- Photonics.

[10]  Bruno Bureau,et al.  Te-rich Ge–Te–Se glass for the CO2 infrared detection at 15 μm , 2009 .

[11]  M. Dongol,et al.  Effect of composition on the electrical and structural properties of As–Te–Ga thin films , 2001 .

[12]  S. K. Tripathi,et al.  Effect of Bi addition on the optical behavior of a-Ge-Se-In-Bi thin films , 2008 .

[13]  M. Imran,et al.  Experimental investigation on some electrical parameters of In10−xSnxSe90 (x = 2, 4, 6, and 8) chalcogenide glasses before and after γ-irradiation , 2011 .

[14]  A. Akl,et al.  Electrical transport properties and Mott's parameters of chalcogenide cadmium sulphoselenide bulk glasses , 2016 .

[15]  A. Husakou,et al.  Supercontinuum generation in planar rib waveguides enabled by anomalous dispersion. , 2006, Optics express.

[16]  Preeti Yadav,et al.  Linear and nonlinear optical properties of new Se-based quaternary Se–Sn–(Bi,Te) chalcogenide thin films , 2015 .

[17]  M. DiDomenico,et al.  Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials , 1971 .

[18]  S. Fayek Study on the electrical properties and the effect of heat treatment on structure of Ge-Se-Te alloys , 2000 .

[19]  Yasser A. M. Ismail,et al.  Compositional dependence of the optical properties of amorphous Se80 − xTe20Bix thin films using transmittance and reflectance measurements , 2013 .

[20]  M. Tacke,et al.  Epitaxial lead chalcogenide IR sensors on Si for 3-5 and 8-12μm , 1990 .

[21]  V. Vassilev,et al.  Optical properties of new chalcogenide glasses from the GeSe2–Sb2Se3–PbSe system , 2008 .

[22]  R. Thangaraj,et al.  Optical and electrical properties of Te-substituted Sn–Sb–Se semiconducting thin films , 2012 .

[23]  M. Wakkad,et al.  OPTICAL PROPERTIES OF InGeSe THIN FILMS , 2009 .

[24]  X. H. Zhang,et al.  Telluride Glass Step Index Fiber for the far Infrared , 2010, Journal of Lightwave Technology.

[25]  Charles C. Wang Empirical Relation between the Linear and the Third-Order Nonlinear Optical Susceptibilities , 1970 .

[26]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[27]  G. Connell,et al.  Comments on the evidence for sharp and gradual optical absorption edges in amorphous germanium , 1973 .

[28]  S. Ovshinsky,et al.  Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties , 1985 .

[29]  A. Szekeres,et al.  Optical properties of GexSb20−xTe80 thin films and their changes by light illumination , 2008 .

[30]  Masakuni Suzuki,et al.  Impurity effects of some metals on electrical properties of amorphous As2Se1Te2 films , 1983 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  K. Aly,et al.  Effect of Te additions on the optical properties of (As-Sb-Se) thin films , 2007 .

[33]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[34]  M. Osman,et al.  Structure, optical and electrical properties of Ge 30Sb 10Se 60 thin films , 2008 .

[35]  Influence of illumination on the optical bandgap energy value of GexSb20-xTe80 films , 2005 .

[36]  Nevill Mott,et al.  Conduction in non-crystalline systems , 1968 .

[37]  N. George,et al.  Optical absorption studies of free (H2Pc) and rare earth (RePc) phthalocyanine doped borate glasses , 2000 .

[38]  Sinn-wen Chen,et al.  Glass formation, physical properties and optical properties of Ge-Se-Sn and Ge-Sb-Se-Sn alloys , 2003 .

[39]  J. C. Phillips,et al.  Constraint theory, vector percolation and glass formation , 1985 .