On the Convergence of the Spectral Viscosity Method for the Two-Dimensional Incompressible Euler Equations with Rough Initial Data
暂无分享,去创建一个
[1] E. Titi,et al. Exponential decay rate of the power spectrum for solutions of the Navier--Stokes equations , 1995 .
[2] Eitan Tadmor,et al. Approximate solutions of the incompressible Euler equations with no concentrations , 2000 .
[3] Akira Ogawa,et al. Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .
[4] V. I. Yudovich,et al. Uniqueness Theorem for the Basic Nonstationary Problem in the Dynamics of an Ideal Incompressible Fluid , 1995 .
[5] S. Schochet. The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws , 1990 .
[6] M. Vishik,et al. Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type , 1999 .
[7] Siddhartha Mishra,et al. Statistical Solutions of Hyperbolic Conservation Laws: Foundations , 2016, Archive for Rational Mechanics and Analysis.
[8] Filippo Leonardi. Numerical methods for ensemble based solutions to incompressible flow equations , 2018 .
[9] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[10] Wilhelm Schlag,et al. LOCAL SMOOTHING ESTIMATES RELATED TO THE CIRCULAR MAXIMAL THEOREM , 1997 .
[11] E. Tadmor,et al. Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .
[12] Steven Schochet,et al. The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation , 1995 .
[13] R. Krasny. A study of singularity formation in a vortex sheet by the point-vortex approximation , 1986, Journal of Fluid Mechanics.
[14] Dongho Chae,et al. Weak solutions of 2-D incompressible Euler equations , 1994 .
[15] J. Delort. Existence de nappes de tourbillon en dimension deux , 1991 .
[16] R. Krasny. Desingularization of periodic vortex sheet roll-up , 1986 .
[17] Eitan Tadmor,et al. Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the $$2/3$$2/3 de-aliasing method , 2013, Numerische Mathematik.
[18] Sijue Wu,et al. OnL1-vorticity for 2-D incompressible flow , 1993 .
[19] Camillo De Lellis,et al. The Euler equations as a differential inclusion , 2007 .
[20] A. Shnirelman,et al. Weak Solutions with Decreasing Energy¶of Incompressible Euler Equations , 2000 .
[21] Camillo De Lellis,et al. On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.
[22] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[23] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[24] Steven Schochet,et al. THE POINT-VORTEX METHOD FOR PERIODIC WEAK SOLUTIONS OF THE 2-D EULER EQUATIONS , 1996 .
[25] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[26] E. Tadmor. Total-variation and error estimates for spectral viscosity approximations , 1993 .
[27] Eitan Tadmor,et al. On the computation of measure-valued solutions , 2016, Acta Numerica.
[28] Leon Lichtenstein. Über einige Existenzprobleme der Hydrodynamik , .
[29] E. Stein,et al. Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .
[30] E. Tadmor,et al. Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .
[31] Siddhartha Mishra,et al. Numerical approximation of statistical solutions of planar, incompressible flows , 2016 .
[32] Siddhartha Mishra,et al. Computation of measure-valued solutions for the incompressible Euler equations , 2014 .
[33] Zhouping Xin,et al. Convergence of the point vortex method for 2-D vortex sheet , 2001, Math. Comput..
[34] Vladimir Scheffer,et al. An inviscid flow with compact support in space-time , 1993 .
[35] Andrew J. Majda,et al. Vorticity and Incompressible Flow: Index , 2001 .
[36] John Lowengrub,et al. Numerical evidence of nonuniqueness in the evolution of vortex sheets , 2006 .
[37] Dongho Chae. Weak solutions of 2-D Euler equations with initial vorticity in L(log L) , 1993 .
[38] George Em Karniadakis,et al. A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .
[39] Eitan Tadmor,et al. Shock capturing by the spectral viscosity method , 1990 .
[40] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[41] Chi-Wang Shu,et al. H(div) conforming and DG methods for incompressible Euler’s equations , 2016 .
[42] Eitan Tadmor,et al. Non-Oscillatory Central Schemes for the Incompressible 2-D Euler Equations , 1997 .
[43] Leon Lichtenstein. ber einige Existenzprobleme der Hydrodynamik: Zweite Abhandlung Nichthomogene, unzusammendrckbare, reibungslose Flssigkeiten , 1927 .
[44] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[45] A. Majda,et al. Concentrations in regularizations for 2-D incompressible flow , 1987 .
[46] Andrey Morgulis. On existence of two-dimensional nonstationary flows of an ideal incompressible liquid admitting a curl nonsummable to any power greater than 1 , 1992 .
[47] M. Vishik,et al. Hydrodynamics in Besov Spaces , 1998 .
[48] H. Kreiss,et al. Smallest scale estimates for the Navier-Stokes equations for incompressible fluids , 1990 .
[49] V. I. Yudovich,et al. Non-stationary flow of an ideal incompressible liquid , 1963 .
[50] Xiaoming Wang,et al. Analysis of Nonlinear Spectral Eddy-Viscosity Models of Turbulence , 2010, J. Sci. Comput..
[51] S. Ghosal. An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .
[52] Zhouping Xin,et al. Convergence of vortex methods for weak solutions to the 2‐D euler equations with vortex sheet data , 1995 .