On the Convergence of the Spectral Viscosity Method for the Two-Dimensional Incompressible Euler Equations with Rough Initial Data

We propose a spectral viscosity method to approximate the two-dimensional Euler equations with rough initial data and prove that the method converges to a weak solution for a large class of initial data, including when the initial vorticity is in the so-called Delort class, i.e., it is a sum of a signed measure and an integrable function. This provides the first convergence proof for a numerical method approximating the Euler equations with such rough initial data and closes the gap between the available existence theory and rigorous convergence results for numerical methods. We also present numerical experiments, including computations of vortex sheets and confined eddies, to illustrate the proposed method.

[1]  E. Titi,et al.  Exponential decay rate of the power spectrum for solutions of the Navier--Stokes equations , 1995 .

[2]  Eitan Tadmor,et al.  Approximate solutions of the incompressible Euler equations with no concentrations , 2000 .

[3]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[4]  V. I. Yudovich,et al.  Uniqueness Theorem for the Basic Nonstationary Problem in the Dynamics of an Ideal Incompressible Fluid , 1995 .

[5]  S. Schochet The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws , 1990 .

[6]  M. Vishik,et al.  Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type , 1999 .

[7]  Siddhartha Mishra,et al.  Statistical Solutions of Hyperbolic Conservation Laws: Foundations , 2016, Archive for Rational Mechanics and Analysis.

[8]  Filippo Leonardi Numerical methods for ensemble based solutions to incompressible flow equations , 2018 .

[9]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[10]  Wilhelm Schlag,et al.  LOCAL SMOOTHING ESTIMATES RELATED TO THE CIRCULAR MAXIMAL THEOREM , 1997 .

[11]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[12]  Steven Schochet,et al.  The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation , 1995 .

[13]  R. Krasny A study of singularity formation in a vortex sheet by the point-vortex approximation , 1986, Journal of Fluid Mechanics.

[14]  Dongho Chae,et al.  Weak solutions of 2-D incompressible Euler equations , 1994 .

[15]  J. Delort Existence de nappes de tourbillon en dimension deux , 1991 .

[16]  R. Krasny Desingularization of periodic vortex sheet roll-up , 1986 .

[17]  Eitan Tadmor,et al.  Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the $$2/3$$2/3 de-aliasing method , 2013, Numerische Mathematik.

[18]  Sijue Wu,et al.  OnL1-vorticity for 2-D incompressible flow , 1993 .

[19]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007 .

[20]  A. Shnirelman,et al.  Weak Solutions with Decreasing Energy¶of Incompressible Euler Equations , 2000 .

[21]  Camillo De Lellis,et al.  On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.

[22]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[23]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[24]  Steven Schochet,et al.  THE POINT-VORTEX METHOD FOR PERIODIC WEAK SOLUTIONS OF THE 2-D EULER EQUATIONS , 1996 .

[25]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[26]  E. Tadmor Total-variation and error estimates for spectral viscosity approximations , 1993 .

[27]  Eitan Tadmor,et al.  On the computation of measure-valued solutions , 2016, Acta Numerica.

[28]  Leon Lichtenstein Über einige Existenzprobleme der Hydrodynamik , .

[29]  E. Stein,et al.  Introduction to Fourier analysis on Euclidean spaces (PMS-32) , 1972 .

[30]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[31]  Siddhartha Mishra,et al.  Numerical approximation of statistical solutions of planar, incompressible flows , 2016 .

[32]  Siddhartha Mishra,et al.  Computation of measure-valued solutions for the incompressible Euler equations , 2014 .

[33]  Zhouping Xin,et al.  Convergence of the point vortex method for 2-D vortex sheet , 2001, Math. Comput..

[34]  Vladimir Scheffer,et al.  An inviscid flow with compact support in space-time , 1993 .

[35]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[36]  John Lowengrub,et al.  Numerical evidence of nonuniqueness in the evolution of vortex sheets , 2006 .

[37]  Dongho Chae Weak solutions of 2-D Euler equations with initial vorticity in L(log L) , 1993 .

[38]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[39]  Eitan Tadmor,et al.  Shock capturing by the spectral viscosity method , 1990 .

[40]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[41]  Chi-Wang Shu,et al.  H(div) conforming and DG methods for incompressible Euler’s equations , 2016 .

[42]  Eitan Tadmor,et al.  Non-Oscillatory Central Schemes for the Incompressible 2-D Euler Equations , 1997 .

[43]  Leon Lichtenstein ber einige Existenzprobleme der Hydrodynamik: Zweite Abhandlung Nichthomogene, unzusammendrckbare, reibungslose Flssigkeiten , 1927 .

[44]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[45]  A. Majda,et al.  Concentrations in regularizations for 2-D incompressible flow , 1987 .

[46]  Andrey Morgulis On existence of two-dimensional nonstationary flows of an ideal incompressible liquid admitting a curl nonsummable to any power greater than 1 , 1992 .

[47]  M. Vishik,et al.  Hydrodynamics in Besov Spaces , 1998 .

[48]  H. Kreiss,et al.  Smallest scale estimates for the Navier-Stokes equations for incompressible fluids , 1990 .

[49]  V. I. Yudovich,et al.  Non-stationary flow of an ideal incompressible liquid , 1963 .

[50]  Xiaoming Wang,et al.  Analysis of Nonlinear Spectral Eddy-Viscosity Models of Turbulence , 2010, J. Sci. Comput..

[51]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[52]  Zhouping Xin,et al.  Convergence of vortex methods for weak solutions to the 2‐D euler equations with vortex sheet data , 1995 .