(Semi)Classical Limit of the Hartree Equation with Harmonic Potential
暂无分享,去创建一个
[1] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[2] Jeffrey Rauch,et al. Lectures on Geometric Optics , 1998 .
[3] Paul H. Rabinowitz,et al. On a class of nonlinear Schrödinger equations , 1992 .
[4] Weizhu Bao,et al. Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X alpha Model , 2003 .
[5] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[6] Long Range Scattering and Modified Wave Operators for some Hartree Type Equations, III. Gevrey Spaces and Low Dimensions , 1998, math/9807031.
[7] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[8] Rémi Carles,et al. Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation , 2003, math/0702656.
[9] Norbert J. Mauser,et al. The Schrödinger-Poisson-X equation , 2001, Appl. Math. Lett..
[10] Nakao Hayashi,et al. Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations , 1998 .
[11] N. Hayashi,et al. Scattering theory for Hartree type equations , 1987 .
[12] C. David Levermore,et al. The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .
[13] Norbert J. Mauser,et al. THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .
[14] R. Carles. Geometric Optics and Long Range Scattering¶for One-Dimensional Nonlinear Schrödinger Equations , 2001 .
[15] L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas , 1995 .
[16] J. K. Hunter,et al. Caustics of nonlinear waves , 1987 .
[17] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[18] Peter D. Miller,et al. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.
[19] J. Joly,et al. Caustics for Dissipative Semilinear Oscillations , 2000 .
[20] Rémi Carles,et al. Remarques sur les mesures de Wigner , 2001 .
[21] Y. Oh. Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials , 1989 .
[22] Semi-classical limits of Schrödinger-Poisson systems via Wigner transforms , 2002 .
[23] Ping Zhang,et al. The limit from the Schrödinger‐Poisson to the Vlasov‐Poisson equations with general data in one dimension , 2002 .
[24] Christof Sparber,et al. Wigner functions versus WKB‐methods in multivalued geometrical optics , 2001 .
[25] Emi Carles,et al. Geometric Optics with Caustic Crossing for Some Nonlinear Schr¨ odinger Equations , 2000 .
[26] J. Ginibre,et al. Long Range Scattering and Modified Wave Operators for some Hartree Type Equations II , 1998, math/9903073.
[27] Philippe Bechouche,et al. Semiclassical limit for the Schrödinger‐Poisson equation in a crystal , 2001 .
[28] Johannes J. Duistermaat,et al. Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .
[29] Walter Thirring,et al. A Course in Mathematical Physics , 1978 .