(Semi)Classical Limit of the Hartree Equation with Harmonic Potential

Nonlinear Schrodinger equations (NLS) of the Hartree type occur in the modeling of quantum semiconductor devices. Their "semiclassical" limit of vanishing (scaled) Planck constant is both a mathematical challenge and practically relevant when coupling quantum models to classical models. With the aim of describing the semiclassical limit of the three-dimensional (3D) Schrodinger--Poisson system with an additional harmonic potential, we study some semiclassical limits of the Hartree equation with harmonic potential in space dimension $n \geq 2$. The harmonic potential is confining and causes focusing periodically in time. We prove asymptotics in several cases, showing different possible nonlinear phenomena according to the interplay of the size of the initial data and the power of the Hartree potential. In the case of the 3D Schrodinger--Poisson system with harmonic potential, we can give only a formal computation since the need for modified scattering operators for this long-range scattering case goes beyo...

[1]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[2]  Jeffrey Rauch,et al.  Lectures on Geometric Optics , 1998 .

[3]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[4]  Weizhu Bao,et al.  Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X alpha Model , 2003 .

[5]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[6]  Long Range Scattering and Modified Wave Operators for some Hartree Type Equations, III. Gevrey Spaces and Low Dimensions , 1998, math/9807031.

[7]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[8]  Rémi Carles,et al.  Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation , 2003, math/0702656.

[9]  Norbert J. Mauser,et al.  The Schrödinger-Poisson-X equation , 2001, Appl. Math. Lett..

[10]  Nakao Hayashi,et al.  Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations , 1998 .

[11]  N. Hayashi,et al.  Scattering theory for Hartree type equations , 1987 .

[12]  C. David Levermore,et al.  The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .

[13]  Norbert J. Mauser,et al.  THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .

[14]  R. Carles Geometric Optics and Long Range Scattering¶for One-Dimensional Nonlinear Schrödinger Equations , 2001 .

[15]  L. Hörmander Symplectic classification of quadratic forms, and general Mehler formulas , 1995 .

[16]  J. K. Hunter,et al.  Caustics of nonlinear waves , 1987 .

[17]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[18]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[19]  J. Joly,et al.  Caustics for Dissipative Semilinear Oscillations , 2000 .

[20]  Rémi Carles,et al.  Remarques sur les mesures de Wigner , 2001 .

[21]  Y. Oh Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials , 1989 .

[22]  Semi-classical limits of Schrödinger-Poisson systems via Wigner transforms , 2002 .

[23]  Ping Zhang,et al.  The limit from the Schrödinger‐Poisson to the Vlasov‐Poisson equations with general data in one dimension , 2002 .

[24]  Christof Sparber,et al.  Wigner functions versus WKB‐methods in multivalued geometrical optics , 2001 .

[25]  Emi Carles,et al.  Geometric Optics with Caustic Crossing for Some Nonlinear Schr¨ odinger Equations , 2000 .

[26]  J. Ginibre,et al.  Long Range Scattering and Modified Wave Operators for some Hartree Type Equations II , 1998, math/9903073.

[27]  Philippe Bechouche,et al.  Semiclassical limit for the Schrödinger‐Poisson equation in a crystal , 2001 .

[28]  Johannes J. Duistermaat,et al.  Oscillatory integrals, lagrange immersions and unfolding of singularities , 1974 .

[29]  Walter Thirring,et al.  A Course in Mathematical Physics , 1978 .