Formation and photoluminescent properties of embedded ZnO quantum dots in ZnO∕ZnMgO multiple-quantum-well-structured nanorods

ZnO∕Zn0.8Mg0.2O multiple-quantum-well (MQW) nanorods with a different number of periods and well widths were grown by catalyst-free metal-organic vapor phase epitaxy. Their optical and structural characteristics were investigated using photoluminescence, transmission electron microscopy, and field emission scanning electron microscopy. Unlike ZnO∕ZnMgO MQW thin films, it was observed that embedded quantum dots played a more important role in the optical characteristics of ZnO∕ZnMgO MQW nanorods than quantum confined Stark effect due to polarization field.

[1]  S. An,et al.  Near-field measurement of spectral anisotropy and optical absorption of isolated ZnO nanorod single-quantum-well structures , 2005 .

[2]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[3]  H. M. Jang,et al.  Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy , 2002 .

[4]  A. Balandin,et al.  Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals , 2006 .

[5]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[6]  S. An,et al.  Photoluminescent Properties of ZnO/Zn0.8Mg0.2O Nanorod Single-Quantum-Well Structures , 2004 .

[7]  M. Funato,et al.  Photoluminescence properties of MgS/CdSe quantum wells and quantum dots , 2002 .

[8]  A. Balandin,et al.  Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes , 2004 .

[9]  Gyu-Chul Yi,et al.  Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures , 2003 .

[10]  Guy Feuillet,et al.  Quantitative characterization of GaN quantum-dot structures in AlN by high-resolution transmission electron microscopy , 1999 .

[11]  H. Koinuma,et al.  Radiative recombination of electron–hole pairs spatially separated due to quantum-confined Stark and Franz–Keldish effects in ZnO/Mg0.27Zn0.73O quantum wells , 2002 .

[12]  Gyu-Chul Yi,et al.  Excitonic emissions observed in ZnO single crystal nanorods , 2003 .

[13]  Heteroepitaxal fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures , 2004 .

[14]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[15]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[16]  Motoichi Ohtsu,et al.  Evaluation of the discrete energy levels of individual ZnO nanorodsingle-quantum-well structures using near-field ultraviolet photoluminescence spectroscopy , 2004 .

[17]  M. Zervos,et al.  Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs (111) nanowires , 2004 .