Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers

Building on recent progress at the intersection of combinatorial optimization and deep learning, we propose an end-to-end trainable architecture for deep graph matching that contains unmodified combinatorial solvers. Using the presence of heavily optimized combinatorial solvers together with some improvements in architecture design, we advance state-of-the-art on deep graph matching benchmarks for keypoint correspondence. In addition, we highlight the conceptual advantages of incorporating solvers into deep learning architectures, such as the possibility of post-processing with a strong multi-graph matching solver or the indifference to changes in the training setting. Finally, we propose two new challenging experimental setups. The code is available at this https URL

[1]  Anita Sellent,et al.  GraphFlow - 6D Large Displacement Scene Flow via Graph Matching , 2015, GCPR.

[2]  Yaser Sheikh,et al.  OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Cristian Sminchisescu,et al.  Deep Learning of Graph Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[4]  Priya L. Donti,et al.  SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver , 2019, ICML.

[5]  Georg Martius,et al.  Differentiation of Blackbox Combinatorial Solvers , 2020, ICLR.

[6]  Jan Kautz,et al.  PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Christian Theobalt,et al.  A Convex Relaxation for Multi-Graph Matching , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[9]  Jonathon S. Hare,et al.  Learning Representations of Sets through Optimized Permutations , 2018, ICLR.

[10]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[11]  Jitendra Malik,et al.  Poselets: Body part detectors trained using 3D human pose annotations , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Carsten Rother,et al.  A Study of Lagrangean Decompositions and Dual Ascent Solvers for Graph Matching , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[14]  Samy Bengio,et al.  Neural Combinatorial Optimization with Reinforcement Learning , 2016, ICLR.

[15]  Eranda C Ela,et al.  Assignment Problems , 1964, Comput. J..

[16]  Jean Ponce,et al.  Learning Graphs to Match , 2013, 2013 IEEE International Conference on Computer Vision.

[17]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[18]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[19]  Jean Ponce,et al.  SPair-71k: A Large-scale Benchmark for Semantic Correspondence , 2019, ArXiv.

[20]  Fernando De la Torre,et al.  Factorized Graph Matching , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Andrea Lodi,et al.  Exact Combinatorial Optimization with Graph Convolutional Neural Networks , 2019, NeurIPS.

[22]  Claudio Michaelis,et al.  Optimizing Rank-Based Metrics With Blackbox Differentiation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Jugal K. Kalita,et al.  Global Alignment of Protein-Protein Interaction Networks: A Survey , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[24]  Alexandre Lacoste,et al.  Learning Heuristics for the TSP by Policy Gradient , 2018, CPAIOR.

[25]  Junchi Yan,et al.  Neural Graph Matching Network: Learning Lawler's Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching , 2019, ArXiv.

[26]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[27]  Li Liu,et al.  Aligning Users across Social Networks Using Network Embedding , 2016, IJCAI.

[28]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[30]  Yusuf Sahillioğlu,et al.  Recent advances in shape correspondence , 2019, The Visual Computer.

[31]  Yong-Sheng Chen,et al.  Pyramid Stereo Matching Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[32]  J. Zico Kolter,et al.  OptNet: Differentiable Optimization as a Layer in Neural Networks , 2017, ICML.

[33]  Raquel Urtasun,et al.  Efficient Deep Learning for Stereo Matching , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Baoxin Li,et al.  Learning deep graph matching with channel-independent embedding and Hungarian attention , 2020, ICLR.

[35]  Hwann-Tzong Chen,et al.  Multi-object tracking using dynamical graph matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[36]  Heinrich Müller,et al.  SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[37]  Jin Tang,et al.  GLMNet: Graph Learning-Matching Networks for Feature Matching , 2019, ArXiv.

[38]  Michael J. Black,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2013, International Journal of Computer Vision.

[39]  Geir Dahl,et al.  Lagrangian-based methods for finding MAP solutions for MRF models , 2000, IEEE Trans. Image Process..

[40]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Milind Tambe,et al.  MIPaaL: Mixed Integer Program as a Layer , 2019, AAAI.

[42]  Bogdan Savchynskyy,et al.  A Dual Ascent Framework for Lagrangean Decomposition of Combinatorial Problems , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Vladimir Kolmogorov,et al.  A Dual Decomposition Approach to Feature Correspondence , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[45]  RothStefan,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2014 .

[46]  Le Song,et al.  2 Common Formulation for Greedy Algorithms on Graphs , 2018 .

[47]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[48]  Le Song,et al.  Learning to Branch in Mixed Integer Programming , 2016, AAAI.

[49]  Gerhard J. Woeginger,et al.  Graph Similarity and Approximate Isomorphism , 2018, MFCS.

[50]  Tias Guns,et al.  Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems , 2019, AAAI.

[51]  Claire Cardie,et al.  SparseMAP: Differentiable Sparse Structured Inference , 2018, ICML.

[52]  Vikas Singh,et al.  Solving the multi-way matching problem by permutation synchronization , 2013, NIPS.

[53]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Wee Sun Lee,et al.  Deep Graphical Feature Learning for the Feature Matching Problem , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[55]  Ryan P. Adams,et al.  Ranking via Sinkhorn Propagation , 2011, ArXiv.

[56]  Björn Ommer,et al.  Deep Semantic Feature Matching , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Nils M. Kriege,et al.  Deep Graph Matching Consensus , 2020, ICLR.

[58]  Eugene W. Myers,et al.  Active Graph Matching for Automatic Joint Segmentation and Annotation of C. elegans , 2014, MICCAI.

[59]  Max Welling,et al.  Attention, Learn to Solve Routing Problems! , 2018, ICLR.

[60]  Richard S. Zemel,et al.  Gated Graph Sequence Neural Networks , 2015, ICLR.

[61]  Maria-Florina Balcan,et al.  Learning to Branch , 2018, ICML.

[62]  Junchi Yan,et al.  Learning Combinatorial Embedding Networks for Deep Graph Matching , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[63]  Jean Ponce,et al.  A graph-matching kernel for object categorization , 2011, 2011 International Conference on Computer Vision.

[64]  Wei Wei,et al.  Pairwise Matching through Max-Weight Bipartite Belief Propagation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..