Singular continuous spectrum and quantitative rates of weak mixing

We prove that for a dense $G_{\delta}$ of shift-invariant measures on $A^{\ZZ^d}$, all $d$ shifts have purely singular continuous spectrum and give a new proof that in the weak topology of measure preserving $\ZZ^d$ transformations, a dense $G_{\delta}$ is generated by transformations with purely singular continuous spectrum. We also give new examples of smooth unitary cocycles over an irrational rotation which have purely singular continuous spectrum. Quantitative weak mixing properties are related by results of Strichartz and Last to spectral properties of the unitary Koopman operators.

[1]  Y. Sinai Dynamical Systems II , 1989 .

[2]  B. Simon L^p Norms of the Borel Transform and the Decomposition of Measures , 1995 .

[3]  P. Liardet,et al.  Spectrum of multidimensional dynamical systems with positive entropy , 1994 .

[4]  Karl Sigmund,et al.  Generic properties of invariant measures for AxiomA-diffeomorphisms , 1970 .

[5]  A. Hofi,et al.  Cellular automata with almost periodic initial conditions , 1994 .

[6]  Barry Simon,et al.  Operators with Singular Continuous Spectrum: I. General Operators , 1995 .

[7]  R. Strichartz Self-Similarity in Harmonic Analysis , 1994 .

[8]  M. Hoschneider Fractal wavelet dimensions and localization , 1994 .

[9]  J. Kahane,et al.  Ensembles parfaits et séries trigonométriques , 1963 .

[10]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[11]  C. Mauduit,et al.  Ergodicity of a Class of Cocycles Over Irrational Rotations , 1994 .

[12]  K. Merrill Cohomology of step functions under irrational rotations , 1985 .

[13]  A. M. Stepin SPECTRAL PROPERTIES OF GENERIC DYNAMICAL SYSTEMS , 1987 .

[14]  P. Halmos Lectures on ergodic theory , 1956 .

[15]  L. Cesari,et al.  Dynamical Systems II , 1983 .

[16]  W. Veech THE METRIC THEORY OF INTERVAL EXCHANGE TRANSFORMATIONS I. GENERIC SPECTRAL PROPERTIES , 1984 .

[17]  G. Koumoullis Baire Category in Spaces of Measures , 1996 .

[18]  S. Alpern New proofs that weak mixing is generic , 1976 .

[19]  K. R. Parthasarathy,et al.  On the category of ergodic measures , 1961 .

[20]  Singular continuous spectrum is generic , 1994, math/9410217.

[21]  E. Robinson Ergodic measure preserving transformations with arbitrary finite spectral multiplicities , 1983 .

[22]  Y. Last Quantum Dynamics and Decompositions of Singular Continuous Spectra , 1995 .

[23]  R. Strichartz fourier asymptotics of fractal measures , 1990 .

[24]  On mixing measures for axiom A diffeomorphisms , 1972 .

[25]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[26]  B. Simon,et al.  Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators , 1994 .

[27]  K. Sigmund On the prevalence of zero entropy , 1971 .

[28]  A. Katok,et al.  APPROXIMATIONS IN ERGODIC THEORY , 1967 .

[29]  B. Simon,et al.  Operators with singular continuous spectrum: II. Rank one operators , 1994 .

[30]  A. Katok,et al.  Metric properties of measure preserving homeomorphisms , 1970 .

[31]  Barry Simon,et al.  Singular continuous spectrum for palindromic Schrödinger operators , 1995 .

[32]  Y. Sinai,et al.  Theory of dynamical systems and general transformation groups with invariant measure , 1977 .

[33]  J. Combes Connections Between Quantum Dynamics and Spectral Properties of Time-Evolution Operators , 1993 .

[34]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[35]  I. Guarneri Spectral Properties of Quantum Diffusion on Discrete Lattices , 1989 .