Robustness Aspects of Model Choice

Model selection is a key component in any statistical analysis. In this paper we discuss this issue from the point of view of robustness and we point out the extreme sensitivity of many classical model selection procedures to outliers and other departures from the distributional assumptions of the model. First, we focus on regression and review a robust version of Mallows's Cp as well as some related approaches. We then go beyond the regression model and discuss a robust version of the Akaike Information Criterion for general parametric models.

[1]  Chih-Ling Tsai,et al.  Model selection for least absolute deviations regression in small samples , 1990 .

[2]  Guoqi Qian,et al.  On model selection in robust linear regression , 1996 .

[3]  D. Cox Tests of Separate Families of Hypotheses , 1961 .

[4]  Richard M. Huggins,et al.  Variables Selection using the Wald Test and a Robust Cp , 1996 .

[5]  David R. Cox,et al.  Further Results on Tests of Separate Families of Hypotheses , 1962 .

[6]  C. Mallows More comments on C p , 1995 .

[7]  E. Ronchetti Robust model selection in regression , 1985 .

[8]  E. Ronchetti,et al.  Robust Bounded-Influence Tests in General Parametric Models , 1994 .

[9]  Leslie Godfrey,et al.  Tests of non-nested regression models: Small sample adjustments and Monte Carlo evidence , 1983 .

[10]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[11]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[12]  Elvezio Ronchetti,et al.  A Robust Version of Mallows's C P , 1994 .

[13]  Wolfgang Härdle,et al.  An effective selection of regression variables when the error distribution is incorrectly specified , 1987 .

[14]  H. White,et al.  Regularity conditions for cox's test of non-nested hypotheses , 1982 .

[15]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[16]  R. Shibata An optimal selection of regression variables , 1981 .

[17]  José A.F. Machado,et al.  Robust Model Selection and M-Estimation , 1993, Econometric Theory.

[18]  Alastair R. Hall,et al.  A simplified method of calculating the distribution free Cox test , 1985 .

[19]  Naomi S. Altman,et al.  Assessing Influence in Variable Selection Problems , 1993 .

[20]  Chih-Ling Tsai,et al.  A note on the unification of the Akaike information criterion , 1998 .

[21]  Elvezio Ronchetti,et al.  Robust Testing in Linear Models: The Infinitesimal Approach , 1982 .

[22]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[23]  R. Bhansali,et al.  Some properties of the order of an autoregressive model selected by a generalization of Akaike∘s EPF criterion , 1977 .

[24]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  Anthony C. Atkinson,et al.  A Method for Discriminating between Models , 1970 .

[27]  F. Hampel,et al.  Some mixed questions and comments on robustness , 1991 .

[28]  J. Antoch,et al.  Algoritmic Development in Variable Selection Procedures , 1986 .

[29]  Elvezio Ronchetti,et al.  Robust Linear Model Selection by Cross-Validation , 1997 .

[30]  Robert G. Staudte,et al.  ROBUST VARIABLE SELECTION IN REGRESSION IN THE PRESENCE OF OUTLIERS AND LEVERAGE POINTS , 1995 .