Low-cycle fatigue hysteresis by thermographic and digital image correlation methodologies: a first approach

[1]  B. Wattrisse,et al.  Local experimental investigations of the thermomechanical behavior of a coarse-grained aluminum multicrystal using combined DIC and IRT methods , 2016 .

[2]  A. M. C. Garrano,et al.  THE USE OF DIGITAL IMAGE CORRELATION TO CORRECT THE THERMOELASTIC CURVES IN STATIC TESTS , 2016 .

[3]  T. Jayakumar,et al.  Use of acoustic emission and ultrasonic techniques for monitoring crack initiation/growth during ratcheting studies on 304LN stainless steel straight pipe , 2014 .

[4]  G. Rosa,et al.  Fatigue Analysis by Acoustic Emission and Thermographic Techniques , 2014 .

[5]  Bruno Atzori,et al.  A synthesis of the push‐pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss , 2013 .

[6]  V. Dattoma,et al.  Evaluation of energy of fatigue damage into GFRC through digital image correlation and thermography , 2013 .

[7]  Antonino Risitano,et al.  Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters , 2013 .

[8]  M. D. Mathew,et al.  Influence of dynamic strain aging on the deformation behavior during ratcheting of a 316LN stainless steel , 2013 .

[9]  R. Sandhya,et al.  Analysis of Hysteresis Loops of 316L(N) Stainless Steel under Low Cycle Fatigue Loading Conditions , 2013 .

[10]  Martin Hagara,et al.  Using High-speed Digital Image Correlation to Determine the Damping Ratio , 2012 .

[11]  Alessandra Eleonora Gallinatti,et al.  Fatigue damage identification by means of modal parameters , 2011 .

[12]  Antonino Risitano,et al.  Cumulative damage evaluation of steel using infrared thermography , 2010 .

[13]  V. Dattoma,et al.  Fatigue damage evolution of fiber reinforced composites with digital image correlation analysis , 2010 .

[14]  Vincenzo Crupi,et al.  Using Infrared Thermography in Low-Cycle Fatigue Studies of Welded Joints , 2010 .

[15]  M. Naderi,et al.  On the thermodynamic entropy of fatigue fracture , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  André Chrysochoos,et al.  Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy , 2009 .

[17]  A. Constantinescu,et al.  Dissipative aspects in high cycle fatigue , 2009 .

[18]  Zihui Xia,et al.  A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method , 2005 .

[19]  André Chrysochoos,et al.  Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels , 2004 .

[20]  E. Zanetti,et al.  Correlation between thermography and internal damping in metals , 2003 .

[21]  Yoshiharu Mutoh,et al.  Low cycle fatigue test for solders using non-contact digital image measurement system , 2002 .

[22]  Antonino Risitano,et al.  Rapid determination of the fatigue curve by the thermographic method , 2002 .

[23]  Bertrand Wattrisse,et al.  Kinematic manifestations of localisation phenomena in steels by digital image correlation , 2001 .

[24]  Antonino Risitano,et al.  Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components , 2000 .

[25]  Minh Phong Luong,et al.  Fatigue limit evaluation of metals using an infrared thermographic technique , 1998 .

[26]  J. Kaleta,et al.  Energy stored in a specimen under fatigue limit loading conditions , 1991 .

[27]  C. Feltner,et al.  Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture , 1961 .