Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing

Bayesian compressive sensing (CS) is considered for signals and images that are sparse in a wavelet basis. The statistical structure of the wavelet coefficients is exploited explicitly in the proposed model, and, therefore, this framework goes beyond simply assuming that the data are compressible in a wavelet basis. The structure exploited within the wavelet coefficients is consistent with that used in wavelet-based compression algorithms. A hierarchical Bayesian model is constituted, with efficient inference via Markov chain Monte Carlo (MCMC) sampling. The algorithm is fully developed and demonstrated using several natural images, with performance comparisons to many state-of-the-art compressive-sensing inversion algorithms.

[1]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[2]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[3]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[4]  Hugh Chipman,et al.  Bayesian variable selection with related predictors , 1995, bayes-an/9510001.

[5]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[6]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[7]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[8]  S. Mallat A wavelet tour of signal processing , 1998 .

[9]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[10]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[11]  Christopher M. Bishop,et al.  Variational Relevance Vector Machines , 2000, UAI.

[12]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[13]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[14]  Eero P. Simoncelli,et al.  Image Denoising using Gaussian Scale Mixtures in the Wavelet Domain , 2002 .

[15]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[16]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[17]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[18]  Bhaskar D. Rao,et al.  Perspectives on Sparse Bayesian Learning , 2003, NIPS.

[19]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[20]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[21]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[22]  Minh N. Do,et al.  Signal reconstruction using sparse tree representations , 2005, SPIE Optics + Photonics.

[23]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[24]  Justin Romberg,et al.  Practical Signal Recovery from Random Projections , 2005 .

[25]  Yaakov Tsaig,et al.  Extensions of compressed sensing , 2006, Signal Process..

[26]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[27]  B. Mallick,et al.  Functional clustering by Bayesian wavelet methods , 2006 .

[28]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[29]  David B. Dunson,et al.  Multi-Task Compressive Sensing , 2007 .

[30]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[31]  Martin Vetterli,et al.  Annihilating filter-based decoding in the compressed sensing framework , 2007, SPIE Optical Engineering + Applications.

[32]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[33]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[34]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[35]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[36]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[37]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[38]  Matthias W. Seeger,et al.  Compressed sensing and Bayesian experimental design , 2008, ICML '08.

[39]  M. Ehler Applied and Computational Harmonic Analysis , 2008 .

[40]  M. West,et al.  High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.

[41]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[42]  Richard G. Baraniuk,et al.  Wavelet-domain compressive signal reconstruction using a Hidden Markov Tree model , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[43]  David B. Dunson,et al.  Multi-task compressive sensing with Dirichlet process priors , 2008, ICML '08.

[44]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Union of Subspaces , 2008, ArXiv.

[45]  T. Blumensath,et al.  Sampling Theorems for Signals from the Union of Linear Subspaces , 2008 .

[46]  David B. Dunson,et al.  Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[47]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[48]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[49]  Gabriel Peyré,et al.  Best Basis Compressed Sensing , 2007, IEEE Transactions on Signal Processing.

[50]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[51]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.