An inverse problem of determining fractional orders in a fractal solute transport model

A fractal mobile-immobile (MIM in short) solute transport model in porous media is set forth, and an inverse problem of determining the fractional orders by the additional measurements at one interior point is investigated by Laplace transform. The unique existence of the solution to the forward problem is obtained based on the inverse Laplace transform, and the uniqueness of the inverse problem is proved in the real-space of Laplace transform by the maximum principle, and numerical inversions with noisy data are presented to demonstrate a numerical stability of the inverse problem.

[1]  Masahiro Yamamoto,et al.  Uniqueness in determining fractional orders of derivatives and initial values , 2021, Inverse Problems.

[2]  Xianzheng Jia,et al.  Numerical Simulation for a Fractal MIM Model for Solute Transport in Porous Media , 2021 .

[3]  T. Wei,et al.  Recovering the time-dependent potential function in a multi-term time-fractional diffusion equation , 2019, Applied Numerical Mathematics.

[4]  R. Raghavan Fractional derivatives: Application to transient flow , 2011 .

[5]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[6]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[7]  Hongwei Zhou,et al.  Modeling non-Darcian flow and solute transport in porous media with the Caputo–Fabrizio derivative , 2019, Applied Mathematical Modelling.

[8]  X. Jia,et al.  Simultaneous Inversion for Space-Dependent Diffusion Coefficient and Source Magnitude in the Time Fractional Diffusion Equation , 2013 .

[9]  M. Caputo,et al.  Diffusion in porous layers with memory , 2004 .

[10]  Hongwei Zhou,et al.  Conformable derivative approach to anomalous diffusion , 2018 .

[11]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[12]  Xianzheng Jia,et al.  Numerical Solution to the Multi-Term Time Fractional Diffusion Equation in a Finite Domain , 2016 .

[13]  S. Hansbo,et al.  CONSOLIDATION EQUATION VALID FOR BOTH DARCIAN AND NON-DARCIAN FLOW , 2001 .

[14]  X. Jia,et al.  Simultaneous inversion for the diffusion and source coefficients in the multi-term TFDE , 2017 .

[15]  Ting Wei,et al.  Simultaneous identification of three parameters in a time-fractional diffusion-wave equation by a part of boundary Cauchy data , 2020, Appl. Math. Comput..

[16]  Ying Zhang,et al.  Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate , 2012 .

[17]  P. F. Low,et al.  Threshold Gradient for Water Flow in Clay Systems , 1963 .

[18]  R. Sperb Maximum Principles and Their Applications , 2012 .

[19]  Masahiro Yamamoto,et al.  A backward problem for the time-fractional diffusion equation , 2010 .

[20]  Xiaoliang Cheng,et al.  Inverse source problem for a distributed-order time fractional diffusion equation , 2019 .

[21]  Z. Wen,et al.  A mobile-immobile model for reactive solute transport in a radial two-zone confined aquifer , 2020 .

[22]  Abiola D. Obembe,et al.  Variable-order derivative time fractional diffusion model for heterogeneous porous media , 2017 .

[23]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[24]  David A. Benson,et al.  A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations , 2009 .

[25]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[26]  D. Benson,et al.  Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .

[27]  M. Th. van Genuchten,et al.  Two‐Site/Two‐Region Models for Pesticide Transport and Degradation: Theoretical Development and Analytical Solutions , 1989 .

[28]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[29]  Masahiro Yamamoto,et al.  Global uniqueness in an inverse problem for time fractional diffusion equations , 2016, 1601.00810.

[30]  M. Meerschaert,et al.  Space-time duality and high-order fractional diffusion. , 2018, Physical review. E.

[31]  M. Close,et al.  Non-equilibrium transport of Cd in alluvial gravels , 1999 .

[32]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[33]  Masahiro Yamamoto,et al.  Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation , 2009 .

[34]  Fractional diffusion with two time scales , 2006 .

[35]  I. Vardoulakis,et al.  Modelling infiltration by means of a nonlinear fractional diffusion model , 2006 .

[36]  Gongsheng Li,et al.  Uniqueness in the inversion of distributed orders in ultraslow diffusion equations , 2020, J. Comput. Appl. Math..

[37]  Xiangcheng Zheng,et al.  Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations , 2019, Inverse Problems.