A sub-200 nanometer wide 3D stacking thin-film temperature sensor

We developed a series of thin-film thermocouples (TFTCs) made from Cr, Au, and Pd long stripes with a width of 90–300 nm and a 10 nm insulating HfO2 layer. The sensors have a three-dimensional sandwich structure, therefore reducing the total width down to 138 nm. Their sensitivity (thermopower) values were measured to be 9.6 ± 0.7 μV K−1 for the Cr/HfO2/Pd sensors and 3.6 ± 0.1 μV K−1 for the Au/HfO2/Pd sensors. These sensors showed reproducible and reliable measurement performance with a good temperature resolution of 0.04–0.1 K and a small heat capacity of 3.2–3.5 × 10−14 J per K per micron length, making them promising candidates for applications in electronic devices, microfluidic systems, and single cell or sub-cell detection as built-in sensors.

[1]  D. D. Pollock Thermocouples: Theory and Properties , 1991 .

[2]  A. Majumdar SCANNING THERMAL MICROSCOPY , 1999, Annual Review of Materials Science.

[3]  Li Shi,et al.  Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes , 2000 .

[4]  R. Pease,et al.  Transient temperature measurements of resist heating using nanothermocouples , 2003 .

[5]  A. Shakouri,et al.  Thermoreflectance based thermal microscope , 2005 .

[6]  Xiaochun Li,et al.  Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes , 2006 .

[7]  Luke P. Lee,et al.  Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip , 2006 .

[8]  Yoshio Nishi,et al.  DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. , 2006, Journal of the American Chemical Society.

[9]  Xiaochun Li,et al.  Experimental Investigations of Laser Micromachining of Nickel Using Thin Film Micro Thermocouples , 2008 .

[10]  C. W. Hagen,et al.  Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art , 2009, Nanotechnology.

[11]  Daniel Jaque,et al.  CdSe quantum dots for two-photon fluorescence thermal imaging. , 2010, Nano letters.

[12]  Qing Chen,et al.  Thin-Film Thermocouple Array for Time-Resolved Local Temperature Mapping , 2011, IEEE Electron Device Letters.

[13]  Liwei Lin,et al.  Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. , 2011, ACS nano.

[14]  Young Won Kim,et al.  Microscale surface thermometry using SU8/Rhodamine-B thin layer , 2011 .

[15]  Gregory S Harms,et al.  Upconverting nanoparticles for nanoscale thermometry. , 2011, Angewandte Chemie.

[16]  Shengyong Xu,et al.  Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays , 2012, Nanoscale Research Letters.

[17]  Shengyong Xu,et al.  An Extremely Simple Thermocouple Made of a Single Layer of Metal , 2012, Advanced materials.

[18]  F. L. Bakker,et al.  Nanoscale temperature sensing using the Seebeck effect , 2012 .

[19]  Romain Quidant,et al.  Mapping intracellular temperature using green fluorescent protein. , 2012, Nano letters.

[20]  J. Cuevas,et al.  Heat dissipation in atomic-scale junctions , 2013, Nature.

[21]  K. Sokolov Nanotechnology: Tiny thermometers used in living cells , 2013, Nature.

[22]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[23]  Yonggang Huang,et al.  Ultrathin conformal devices for precise and continuous thermal characterization of human skin. , 2013, Nature materials.

[24]  J. F. Algorri,et al.  Generation of Optical Vortices by an Ideal Liquid Crystal Spiral Phase Plate , 2014, IEEE Electron Device Letters.

[25]  J. F. Algorri,et al.  Liquid Crystal Temperature Sensor Based on a Micrometric Structure and a Metallic Nanometric Layer , 2014, IEEE Electron Device Letters.

[26]  Qing Chen,et al.  A nano-stripe based sensor for temperature measurement at the submicrometer and nano scales. , 2014, Small.

[27]  A. Shen,et al.  Integrated microfluidic platform for instantaneous flow and localized temperature control , 2015 .

[28]  Seiji Akita,et al.  Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin , 2015 .

[29]  L. Carlos,et al.  Lanthanide–Organic Framework Nanothermometers Prepared by Spray‐Drying , 2015 .

[30]  Y. Hassan,et al.  An accurate wall temperature measurement using infrared thermometry with enhanced two-phase flow visualization in a convective boiling system , 2015 .